Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
377 changes: 377 additions & 0 deletions scripts/image/dither.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,377 @@
## Copyright (C) 2025 Leonardo Araujo <leolca@gmail.com>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; see the file COPYING. If not, see
## <https://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{X} = } dither (@var{RGB}, @var{map})
## @deftypefnx {Function File} {@var{X} = } dither (@var{RGB}, @var{map}, @var{Qm}, @var{Qe})
## @deftypefnx {Function File} {@var{BW} = } dither (@var{I})
##
## @code{@var{X} = dither (@var{RGB},@var{map})} creates an indexed image
## approximation, using the color provided in the colormap, and uses dithering
## to increase apparent color resolution. Floyd-Steinberg error filter is used:
## [ x 7]
## [3 5 1] / 16
## It used a raster scan and no weight renormalization at boundaries.
## The default values are used: @var{Qm}=5, and @var{Qe}=8.
##
## Inputs:
## @var{RGB} is a m x n x 3 array with values in [0, 1] (double) or [0, 255] (uint8).
## @var{map} is c x 3 matrix holding RGB triplets in [0, 1] (double).
## @var{Qm} is the number of quantization bits per axis for inverse colormap (default: 5).
## @var{Qe} is the number of quantization bits for error diffusion (default: 8, max 16).
##
## Output:
## @var{X} is a m x n indexed image (uint8 if c<=256, else uint16) for the
## colormap @var{map} provided.
##
## Example:
## @example
## X = dither (RGB, map);
## @end example
##
## @code{@var{X} = dither (@var{RGB}, @var{map}, @var{Qm}, @var{Qe})}
##
## @var{Qm} is the number of quantization bits along each color axis for the
## inverse colormap. @var{Qm} determines the resolution of this grid along each
## color axis (R, G, B). @var{Qm} defines the precision of the color space
## discretization used to map input RGB values to those colors available in the
## colormap. @var{Qe} is the number of quantization bits for the color space
## error calculations in the Floyd-Steinberg error diffusion algorithm.
## It controls the precision of the error values that are calculated and
## propagated during dithering. If @var{Qe} < @var{Qm}, the error diffusion
## process may lose precision, therefore dithering cannot be performed, and the
## function returns an undithered indexed image.
##
## @code{@var{BW} = dither (@var{I})} converts the grayscale input image @var{I}
## into binary applying dithering in the process. The output image @var{BW}
## is a black and white image where dithering creates the illusion of shades of
## gray.
##
## Ref [1] Floyd, R. W., and Steinberg, L., An Adaptive Algorithm for Spatial
## Gray Scale, International Symposium Digest of Technical Papers, Society for
## Information Displays, 1975, p. 36.
## Ref [2] Ulichney. R., Digital Halftoning, The MIT Press, 1987.
##
## @seealso{rgb2ind, imapprox}
## @end deftypefn

function X = dither (RGB, map, Qm = 5, Qe = 8)
if (nargin < 1 || nargin > 4 || nargin == 3)
print_usage;
endif
if ndims (RGB) == 2
RGB = cat (3, RGB, RGB, RGB); % Duplicate grayscale to RGB
if nargin < 2,
map = [0 0 0; 1 1 1]; % binary (black and white) colormap
Qm = 1;
endif
endif
if ndims (RGB) != 3 || size (RGB, 3) != 3
error('dither: RGB must be an m x n x 3 array.');
end
if !ismatrix (map) || size (map, 2) != 3 || min (map(:)) < 0 || max (map(:)) > 1
error('dither: Colormap must be a c x 3 matrix.');
endif
if nargin > 2,
if Qm < 1 || Qe < 1 || fix (Qm) != Qm || fix (Qe) != Qe
error ('Qm and Qe must be a positive integers.');
elseif Qe < Qm
warning ('dither: Qe < Qm, returning undithered image.');
X = zeros (size (RGB, 1), size (RGB, 2), 'uint16');
for i = 1:size (RGB, 1)
for j = 1:size (RGB, 2)
X(i, j) = rgb2indLUT (RGB(i, j, :), map, Qm);
endfor
endfor
if size (map, 1) <= 256
X = uint8 (X);
endif
return;
endif
endif
Qe = min (Qe, 16); % Cap Qe to avoid excessive precision

% Scale RGB and map to [0, 1]
if isa (RGB, 'uint8')
RGB = double (RGB) / 255;
elseif max (RGB(:)) > 1
RGB = double (RGB) / 255;
end
RGB = max (0, min (1, RGB));
if max (map(:)) > 1
map = double (map) / 255;
end
map = max (0, min (1, map));

% Initialize output
[h, w, _] = size (RGB);
X = zeros (h, w, 'uint16'); % Indices (1-based)

% Floyd-Steinberg weights (raster scan, no renormalization)
FSweights = [0 0 7; 3 5 1] / 16; % Sum = 1

% neighbor offsets and weights
offsets = [0 1; 1 -1; 1 0; 1 1];
weights = [FSweights(1, 3), FSweights(2, 1), FSweights(2, 2), FSweights(2, 3)];

% Quantization levels for error (Qe)
n_levels = 2^Qe;
error_scale = n_levels - 1;

% Process pixels in raster order
for i = 1:h
for j = 1:w
% Get current pixel (with accumulated errors)
pixel = RGB(i, j, :);
pixel = reshape (max (0, min (1, pixel)), 1, 3); % Clamp to [0, 1]

% Quantize to nearest colormap color
id = rgb2indLUT (pixel, map, Qm);
X(i, j) = id;

% Compute quantization error
chosen_color = map(id+1, :);
error = pixel - chosen_color; % 1x3
error = round (error * error_scale) / error_scale; % Quantize to Qe bits

% Diffuse error to neighboring pixels (no renormalization)
for k = 1:length (weights)
ni = i + offsets(k, 1);
nj = j + offsets(k, 2);
if ni <= h && nj >= 1 && nj <= w
% Extract current pixel value as 1x3
current = reshape (RGB(ni, nj, :), 1, 3);
% Apply weighted error to each channel
new_value = current + error * weights(k);
RGB(ni, nj, :) = reshape (new_value, 1, 3);
endif
endfor
endfor
endfor

% Convert output to uint8 if colormap size allows
if size (map, 1) <= 256
X = uint8 (X);
endif
endfunction

function id = rgb2indLUT (pixel, map, Qm = 5)
% RGB2INDLUT Map an RGB pixel to the nearest colormap index using a lookup table.
% id = RGB2INDLUT (pixel, map) returns the 1-based index of the closest color
% in the colormap 'map' for the input RGB pixel (1x3 vector), using a quantized
% inverse colormap with 2^5 bins per RGB axis.
% id = RGB2INDLUT (pixel, map, Qm) uses Qm bits for quantization per RGB axis.
%
% Inputs:
% pixel: 1x3 vector [R, G, B], values in [0, 1] (double) or [0, 255] (uint8).
% map: c-by-3 matrix, each row an RGB triplet in [0, 1] (double).
% Qm: Number of quantization bits per axis (default: 5).
%
% Output:
% id: Index (1-based) into the colormap 'map' for the closest color.
%
% Notes:
% - Uses a persistent lookup table (LUT) for speed.
% - LUT is recomputed if map or Qm changes.
% - Warns if Qm is too large (>8) due to memory constraints.
% - Assumes input pixel and map are properly scaled (pixel auto-scaled if needed).

% Validate inputs
if nargin < 2
error ('rgb2indLUT: Not enough input arguments. Pixel and colormap required.');
endif
if length (pixel) != 3
error ('rgb2indLUT: Pixel must be a 1x3 RGB vector.');
if !isvector (pixel)
[s, i] = sort (size (pixel),'descend');
pixel = permute (pixel, i);
endif
endif
if !ismatrix (map) || size (map, 2) != 3
error ('rgb2indLUT: Colormap must be a c-by-3 matrix.');
endif
if nargin < 3
Qm = 5; % Default quantization bits
end
if !isscalar (Qm) || Qm < 1 || floor (Qm) != Qm
error ('rgb2indLUT: Qm must be a positive integer.');
end
if Qm > 8
warning ('rgb2indLUT: Qm > 8 may use excessive memory (%d^3 bins).', 2^Qm);
endif

% Scale pixel to [0, 1]
if isa (pixel, 'uint8')
pixel = double (pixel) / 255; % Convert to [0, 1]
elseif max (pixel(:)) > 1
pixel = double (pixel) / 255; % Assume [0, 255] if values exceed 1
endif
pixel = max (0, min (1, pixel)); % Clamp to [0, 1]

% Ensure map is in [0, 1]
if max (map(:)) > 1
map = double(map) / 255;
endif
map = max (0, min (1, map));

% Persistent variables for LUT
persistent lut last_map last_Qm;

% Check if we need to recompute the LUT
recompute = isempty (lut) || Qm != last_Qm || !isequal (map, last_map);

% Number of bins per axis
n_bins = 2^Qm;

% Scale pixel to [0, n_bins-1] for indexing
bin_idx = round (pixel * (n_bins - 1)) + 1;

if recompute
% Initialize LUT: n_bins x n_bins x n_bins array of colormap indices
lut = zeros (n_bins, n_bins, n_bins, 'uint16');

% Compute bin centers for distance calculations
bin_centers = (0:(n_bins-1))' / (n_bins-1); % [0, 1] range, column vector
[R, G, B] = ndims_grid(n_bins, n_bins, n_bins); % Meshgrid for bin indices
bin_rgb = [bin_centers(R(:)), bin_centers(G(:)), bin_centers(B(:))]; % n_bins^3 x 3

% Compute Euclidean distances from each bin to each colormap color
c = size (map, 1); % Number of colors
distances = zeros (n_bins^3, c);
for i = 1:c
diff = bin_rgb - map(i, :); % n_bins^3 x 3
distances(:, i) = sqrt (sum (diff.^2, 2)); % n_bins^3 x 1
endfor

% Find the nearest colormap index (1-based) for each bin
[_, indices] = min (distances, [], 2);
lut(:) = indices; % Assign to LUT

% Update cached parameters
last_map = map;
last_Qm = Qm;
endif

% Look up the colormap index
id = lut(bin_idx(1), bin_idx(2), bin_idx(3)) - 1;
endfunction

function [X, Y, Z] = ndims_grid (nx, ny, nz)
% NDIMS_GRID Create 3D grid indices (emulates meshgrid for 3D).
[x, y, z] = ind2sub ([nx, ny, nz], 1:(nx*ny*nz));
X = reshape (x, nx, ny, nz);
Y = reshape (y, nx, ny, nz);
Z = reshape (z, nx, ny, nz);
endfunction

%!demo
%! ## Solid gray
%!
%! I = ones (256)/2;
%! X = dither (I);
%! figure;
%! subplot (121); imshow (I); title ('original');
%! subplot (122); imshow (double(X)); title ('dithered');

%!demo
%! ## Four solid gray levels
%!
%! I = [ones(256,64)/4, ones(256,64)/2, ones(256,64)*3/4, ones(256,64)*7/8];
%! X = dither (I);
%! figure;
%! subplot (121); imshow (I); title ('original');
%! subplot (122); imshow (double(X)); title ('dithered');

%!demo
%! ## Black-White Gradient
%!
%! I = repmat ([0:255]./255,256,1);
%! X = dither (I);
%! figure;
%! subplot (121); imshow (I); title ('original');
%! subplot (122); imshow (double(X)); title ('dithered');

%!demo
%! ## Color Gradient
%!
%! width = 256; height = 256;
%! upperleft = [1, 0, 0]; % Red
%! upperright = [0, 1, 0]; % Green
%! lowerleft = [0, 0, 1]; % Blue
%! lowerright = [0, 0, 0]; % Black
%!
%! % Create a grid for interpolation
%! [x, y] = meshgrid(linspace(0, 1, width), linspace(0, 1, height));
%! % Initialize the 3D array for the image
%! image = zeros(height, width, 3);
%! % Calculate the interpolated colors for each point
%! % The logic is a bilinear interpolation of the four corner colors
%! % The first dimension of the `image` matrix is the height (y-axis) and the second is the width (x-axis)
%! image(:, :, 1) = (1 - x) .* (1 - y) * lowerleft(1) + x .* (1 - y) * lowerright(1) + (1 - x) .* y * upperleft(1) + x .* y * upperright(1);
%! image(:, :, 2) = (1 - x) .* (1 - y) * lowerleft(2) + x .* (1 - y) * lowerright(2) + (1 - x) .* y * upperleft(2) + x .* y * upperright(2);
%! image(:, :, 3) = (1 - x) .* (1 - y) * lowerleft(3) + x .* (1 - y) * lowerright(3) + (1 - x) .* y * upperleft(3) + x .* y * upperright(3);
%!
%! % Use the corner colors to define the colormap
%! map = [upperleft; upperright; lowerleft; lowerright];
%! % Apply dither
%! X = dither (image, map);
%!
%! % Display the results
%! figure;
%! subplot (121); imshow (image); title ('original');
%! subplot (122); imshow (reshape(map(X(:)+1,:), [size(X) 3])); title ('dithered');

%!demo
%! # Lenna
%! url = 'https://upload.wikimedia.org/wikipedia/en/7/7d/Lenna_%28test_image%29.png';
%! rgb_image = imread(url);
%! map = [226 143 122; 199 127 124; 175 71 82; 230 191 168; 210 100 98; 132 50 81; 94 24 65; 149 97 139] / 255;
%! X = dither (rgb_image, map);
%! I = reshape(map(X(:)+1,:), [size(X) 3]);
%! figure;
%! subplot (121); imshow (rgb_image); title ('original');
%! subplot (122); imshow (I); title ('dithered');

## Test input validation
%!error dither ()
%!error dither (permute (1:3,[1 3 2]))
%!error dither (1, 1)
%!error dither (1, 1:3)
%!error dither (1, [0 0 0]')
%!error dither (1, [0 0 0], 0)
%!error dither (1, [0 0 0], 0, 0)
%!error dither (1, [0 0 0], -1, 1)
%!error dither (1, [0 0 0], 1, -1)

%!test
%! X = dither (0, [0 0 0; 1 1 1], 1, 1);
%! assert (X, uint8(0))

%!test
%! X = dither (1, [0 0 0; 1 1 1], 1, 1);
%! assert (X, uint8(1))

%!test
%! X = dither (repmat(ones(3)/2,1,1,3), [0 0 0; 1 1 1], 4, 4);
%! assert (X, uint8([1 0 1; 0 1 0; 1 0 1]))

%!test
%! X = dither (repmat(ones(3)/4,1,1,3), [0 0 0; 1 1 1], 4, 4);
%! assert (X, uint8([0 0 0; 0 1 0; 0 0 0]))

%!test
%! X = dither (repmat(ones(3)*3/4,1,1,3), [0 0 0; 1 1 1], 4, 4);
%! assert (X, uint8([1 1 1; 1 0 1; 1 1 1]))