Skip to content

Easy to use Python wrapper for YOLO Real-Time Object Detection Library

License

Notifications You must be signed in to change notification settings

goktug97/PyYOLO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python Wrapper for the YOLO

logo

Installation

Dependencies

Darknet Shared Library

You should first install darknet library with BUILD_SHARED_LIBS set to ON. After the installation the LIB_DARKNET environment variable should be set to shared library path. The path is required in runtime so my recommendation is adding this to your rc file. export LIB_DARKNET=<path_to_libdarknet.so>

PyYOLO

From PyPi
pip3 install pyyolo --user
From source
git clone https://github.com/goktug97/PyYOLO
cd PyYOLO
python3 setup.py install --user

Documentation

Example

python sample.py

sample.py

import cv2
import pyyolo

def main():
    detector = pyyolo.YOLO("./models/yolov3-spp.cfg",
                           "./models/yolov3-spp.weights",
                           "./models/coco.data",
                           detection_threshold = 0.5,
                           hier_threshold = 0.5,
                           nms_threshold = 0.45)

    cap = cv2.VideoCapture(0)
    while True:
        ret, frame = cap.read()
        dets = detector.detect(frame, rgb=False)
        for i, det in enumerate(dets):
            print(f'Detection: {i}, {det}')
            xmin, ymin, xmax, ymax = det.to_xyxy()
            cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (0, 0, 255))
        cv2.imshow('cvwindow', frame)
        if cv2.waitKey(1) == 27:
            break

if __name__ == '__main__':
    main()

BBox Class

This class is just a numpy array with extra attributes and functions.

Python 3.8.0 (default, Oct 23 2019, 18:51:26)
[GCC 9.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyyolo
>>> bbox = pyyolo.BBox(x=10, y=20, w=100, h=200, prob=0.9, name='person')
>>> bbox
BBox([ 10,  20, 100, 200])
>>> print(bbox)
x: 10, y: 20, w: 100, h: 200, probability: 0.9, name: person
>>> x, y, w, h = bbox
>>> print(x, y, w, h)
10 20 100 200
>>> bbox + bbox
BBox([ 20,  40, 200, 400])
>>> bbox.prob
0.9
>>> bbox.name
'person'
>>> xmin, ymin, xmax, ymax = bbox.to_xyxy()
>>> xmin, ymin, xmax, ymax
(10, 20, 110, 220)

YOLO Class

  • detect function returns list of BBox Instances. See sample.py for example usage.
Python 3.8.0 (default, Oct 23 2019, 18:51:26)
[GCC 9.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import pyyolo
>>> detector = pyyolo.YOLO("./models/yolov3-spp.cfg",
                           "./models/yolov3-spp.weights",
                           "./models/coco.data",
                           detection_threshold = 0.5,
                           hier_threshold = 0.5,
                           nms_threshold = 0.45)
>>> import cv2
>>> img = cv2.imread('test.png')
>>> detector.detect(img)
[BBox([ 29, 134, 461, 339])]
>>> dets = detector.detect(img)
>>> print(dets[0])
x: 29, y: 134, w: 461, h: 339, probability: 0.6172798275947571, name: person

License

PyYOLO is licensed under the MIT License.