mature tRNA sequencing
Use the following command to create a conda environment with the essential packages used by matRseq.
conda env create --file=matRseq.yaml
conda activate matRseqThe metadata file resides in the working directory and lists the required information for each sample. For example:
| Sample.name | Sample.prefix | R1 | R2 | sample.type | cell.line | sample.rep |
|---|---|---|---|---|---|---|
| SW480_LVM2_ribo_r1 | SW480_LVM2_ribo_6_S15 | SW480_LVM2_ribo_6_S15_R1_001.fastq.gz | SW480_LVM2_ribo_6_S15_R2_001.fastq.gz | ribo | SW480-Par | 1 |
| SW480_LVM2_ribo_r2 | SW480_LVM2_ribo_7_S16 | SW480_LVM2_ribo_7_S16_R1_001.fastq.gz | SW480_LVM2_ribo_7_S16_R2_001.fastq.gz | ribo | SW480-Par | 2 |
| SW480_P_total_r1 | SW480_P_total_6_S9 | SW480_P_total_6_S9_R1_001.fastq.gz | SW480_P_total_6_S9_R2_001.fastq.gz total | SW480-LvM2 | 1 | |
| SW480_P_total_r2 | SW480_P_total_7_S10 | SW480_P_total_7_S10_R1_001.fastq.gz | SW480_P_total_7_S10_R2_001.fastq.gz | total | SW480-LvM2 | 2 |
For bi-variate analysis the following command will run the analysis:
python matRseq.py --runMode metadata.txt 'sample.type~cell.line' output.txtand for uni-variate analysis the following command will run the analysis(reference must be specified):
python matRseq.py --runMode --ref=SW480Par metadata_univariate.txt '~cell.line' output.txtRun python matRseq.py for usage.
The following are the options:
--runModeor-rvs--printModeor-p:--printModeprints all the commands that are run-aor--aligner: Choose aligner package (default is BWA)-lor--read: R1, R2, both; Use both R1 and R2 (miSeq) as opposed to R2 (10X). Default is R2--hasUMIvs--noUMI: Whether reads contain UMI or not (Default is hasUMI)--pairedvs--single: if the reads are paired end. (Default is paired)--ref: The sample that is the reference in univariate analysis.