countrycode
standardizes country names, converts them into one of seven coding schemes, assigns region descriptors, and generates empty dyadic or country-year dataframes from the coding schemes. Scroll down for more details or visit the countrycode CRAN page
Different data sources use different coding schemes to represent countries (e.g. CoW or ISO). This poses two main problems: (1) some of these coding schemes are less than intuitive, and (2) merging these data requires converting from one coding scheme to another, or from long country names to a coding scheme.
The countrycode function can convert to and from 7 different country coding schemes. It uses regular expressions to convert long country names (e.g. Sri Lanka) into any of those coding schemes, or into standardized country names (official short English). It can create new variables with the name of the continent and/or region to which each country belongs.
Correlates of War character; CoW-numeric; ISO 3-character; ISO 3-numeric; ISO 2-character; International Monetary Fund; Euro-control (aviation); Food and Agriculture Organization of the United Nations; International Olympic Committee; International Civil Aviation Organization; IPCC, United Nations numeric; FIPS 10-4; official English short country names (ISO); country names in Arabic, Chinese, English, French, German, Russian, Spanish, continent; region.
From the R console, type install.packages("countrycode")
Load library:
> library(countrycode)
Convert single country codes:
# ISO to Correlates of War
countrycode('DZA', 'iso3c', 'cown')
[1] 615
# English to ISO
countrycode('Albania', 'country.name', 'iso3c')
[1] "ALB"
# German to French
countrycode('Albanien', 'country.name.de', 'country.name.fr')
[1] "Albanie"
Convert a vector of country codes
> cowcodes <- c("ALG","ALB","UKG","CAN","USA")
> countrycode(cowcodes,"cowc","iso3c")
[1] "DZA" "ALB" "GBR" "CAN" "USA"
Generate vectors and 2 data frames without a common id (i.e. can't merge the 2 df):
> isocodes <- c(12,8,826,124,840)
> var1 <- sample(1:500,5)
> var2 <- sample(1:500,5)
> df1 <- data.frame(cowcodes,var1)
> df2 <- data.frame(isocodes,var2)
Inspect the data:
> df1
cowcodes var1
1 ALG 71
2 ALB 427
3 UKG 180
4 CAN 21
5 USA 383
> df2
isocodes var2
1 12 238
2 8 329
3 826 463
4 124 437
5 840 26
Create a common variable with the iso3c code in each data frame, merge the data, and create a country identifier:
> df1$iso3c <- countrycode(df1$cowcodes, "cowc", "iso3c")
> df2$iso3c <- countrycode(df2$isocodes, "iso3n", "iso3c")
> df3 <- merge(df1,df2,id="iso3c")
> df3$country <- countrycode(df3$iso3c, "iso3c", "country.name")
> df3
iso3c cowcodes var1 isocodes var2 country
1 ALB ALB 113 8 245 ALBANIA
2 CAN CAN 373 124 197 CANADA
3 DZA ALG 254 12 295 ALGERIA
4 GBR UKG 351 826 57 UNITED KINGDOM
5 USA USA 241 840 85 UNITED STATES
Since version 0.19, countrycode accepts user supplied dictionaries via the custom_dict
argument. For example, the countrycode Github repository includes a dictionary of regexes and abbreviations to work with US state names.
Load the library and download the custom dictionary data.frame:
library(countrycode)
url = "https://raw.githubusercontent.com/vincentarelbundock/countrycode/master/data/extra/us_states.csv"
state_dict = read.csv(url, stringsAsFactors=FALSE)
Convert:
countrycode('State of Alabama', 'state', 'abbreviation',
custom_dict=state_dict,
origin_regex=TRUE)
[1] "AL"
countrycode(c('MI', 'OH', 'Bad'), 'abbreviation', 'state', custom_dict=state_dict)
[1] "Michigan" "Ohio" NA
Note that if you use a custom dictionary with country codes, you could easily merge it into the countrycode::countrycode_data
to gain access to all other codes.
Since version 0.19, countrycode
accepts a user supplied named vector of custom
matches via the custom_match
argument. Any match pairs in the custom_match
vector will supercede the default results of the command. This allows the user
to convert to an available country code and make minor post-edits all at once.
The names of the named vector are used as the origin code, and the values of the
named vector are used as the destination code.
For example, Eurostat uses a modified version of iso2c, with Greece (EL instead
of GR) and the UK (UK instead of GB) being the only differences. Getting a proper
result converting to Eurostat is easy to achieve using the iso2c
destination
and the new custom_match
argument. (Note: since version 0.19, countrycode
also includes a eurostat
origin/destination code, so while this is a good
example, doing so for Eurostat is not necessary)
example: convert from country name to Eurostat code
library(countrycode)
country_names <- c('Greece', 'United Kingdom', 'Germany', 'France')
custom_match <- c(Greece = 'EL', `United Kingdom` = 'UK')
countrycode(country_names, 'country.name', 'iso2c', custom_match = custom_match)
example: convert from Eurostat code to country name
library(eurostat)
library(countrycode)
df <- eurostat::get_eurostat("nama_10_lp_ulc")
custom_match <- c(EL = 'Greece', UK = 'United Kingdom')
countrycode(df$geo, 'iso2c', 'country.name', custom_match = custom_match)
Use warn=TRUE to print out a list of source elements for which no match was found. When the source vector are long country names that need to be matched using regular expressions, there is always a risk that multiple regex will match a given string. When this is the case, countrycode
assigns a value arbitrarily, but the warn
argument allows the user to print a list of all strings that were matched many times.