AI-powered signature verification system achieving 98.1% accuracy with state-of-the-art SuperGlue technology.
Our advanced confusion matrix analysis provides detailed insights into system performance with 98.1% accuracy:
Key Insights from Confusion Matrix:
- True Negatives (450): Rejection of different signatures
- True Positives (115): Acceptance of authentic signatures
- False Positives (2): Minimal false acceptances
- False Negatives (9): Low false rejections
Comprehensive threshold analysis revealing 0.30 as optimal threshold for maximum accuracy:
| Metric | Value |
|---|---|
| Overall Accuracy | 98.1% |
| Precision | 98.3% |
| Recall | 92.7% |
| F1-Score | 95.4% |
| False Positive Rate | |
| False Negative Rate |
Python 3.9+
PyTorch
OpenCV
NumPygit clone https://github.com/gulcihanglmz/superglue-signature-verification.git
cd superglue-signature-verification
pip install -r requirements.txtfrom match_signatures import verify_signature
# Verify signature pair
result = verify_signature("reference.jpg", "test.jpg")
print(f"Match confidence: {result['confidence']:.3f}")
print(f"Verification: {'VALID' if result['is_match'] else 'INVALID'}")βββ models/ # Neural network models
β βββ superglue.py # SuperGlue implementation
β βββ superpoint.py # SuperPoint keypoint detector
β βββ weights/ # Pre-trained model weights
βββ match_signatures.py # Main verification logic
βββ confusion_matrix_analysis_v2.py # Performance analysis
βββ Report.md
βββ requirements.txt
The system includes comprehensive analysis tools:
- Confusion Matrix: Detailed performance breakdown
- Threshold Optimization: Fine-tuned for best results
- Visual Matching: Keypoint visualization and matching display
- Performance Metrics: Professional reporting and analytics
CLASSIFICATION MATRIX:
Predicted
Different | Same
Actual Different 450 | 2 (99.6% specificity)
Actual Same 9 | 115 (92.7% sensitivity)
# Example verification output
{
"signature_pair": "user_123_sample_01.jpg vs user_123_sample_02.jpg",
"match_confidence": 0.847,
"predicted_same": true,
"ground_truth_same": true,
"verification_result": "AUTHENTIC",
"processing_time": "0.68 seconds",
"keypoints_detected": [187, 203],
"keypoints_matched": 94,
"match_ratio": 0.847,
"security_level": "HIGH CONFIDENCE"
}- Fork the repository
- Create your feature branch
- Commit your changes
- Push to the branch
- Open a Pull Request
Star β this repository if you found it helpful!
A Python toolkit for pairwise signature matching using SuperPoint + SuperGlue.
It generates a JSON of match predictions for all signature pairs in your dataset, then visualizes results for inspection.
-
SuperGlue Pretrained Network (Matching backbone): https://github.com/magicleap/SuperGluePretrainedNetwork
-
SuperPoint & SuperGlue papers for algorithmic details:
- DeTone, Malisiewicz & Rabinovich, βSuperPoint: Self-Supervised Interest Point Detection and Descriptionβ, ECCV 2018.
- Sarlin et al., βSuperGlue: Learning Feature Matching with Graph Neural Networksβ, CVPR 2020.




