A lightweight Python stopwatch library for timing code execution with precision. Whether you need to benchmark performance, time specific operations, or track code execution, stw provides a simple yet powerful interface.
- 🔄 Simple start/stop timing
- 🏁 Lap timing with named checkpoints
- ⚡ Function execution benchmarking
- 📊 Visual lap time diagrams
- 🧩 Context manager support (
withstatement) - 📈 Elapsed time tracking
- 🔍 Human-readable time formatting
pip install stwfrom stw import Stopwatch
# Basic timing
sw = Stopwatch(name="quickstart")
sw.lap("begin") # records a lap named "begin"
# ... your code here ...
sw.lap("end")
print(f"Total time: {sw.elapsed_total()}s")from stw import Stopwatch
import time
# Method 1: Manual start/stop
sw = Stopwatch(name="example1")
sw.lap("start")
time.sleep(1.5) # simulate work
total_time, lap_time = sw.lap("end")
print(f"Operation took {lap_time[0]:.2f} seconds") # lap_time
# Method 2: Using context manager (automatically records start/end laps)
with Stopwatch(name="example2", verbose=True) as sw:
time.sleep(1.2) # simulate work
# The elapsed time is automatically printed when exiting the contextfrom stw import Stopwatch
import time
# Create a stopwatch with verbose output
sw = Stopwatch(name="database-ops", verbose=True)
# Record start lap
sw.lap("begin")
# First operation
time.sleep(0.8) # simulate database query
sw.lap("query")
# Prints: [database-ops] query: 0.80s | total: 0.80s
# Second operation
time.sleep(0.5) # simulate data processing
sw.lap("processing")
# Prints: [database-ops] processing: 0.50s | total: 1.30s
# Third operation
time.sleep(0.3) # simulate rendering
sw.lap("render")
# Prints: [database-ops] render: 0.30s | total: 1.60s
# Get time info for a specific operation
timestamp, total_time, lap_time = sw.get_lap(name="query")
print(f"Query operation took {lap_time:.2f}s")
# Print a visual diagram of all operations
sw.print_diagram()from stw import Stopwatch, stopwatch
import time
# Method 1: Using the time_function method
def expensive_calculation(n, factor=2):
time.sleep(n * 0.1) # simulate work
return n * factor
sw = Stopwatch()
# Time any function with any arguments
time_taken, result = sw.time_function(
expensive_calculation,
5, # positional arg
factor=3 # keyword arg
)
print(f"Calculation took {time_taken:.2f}s and returned {result}")
# Method 2: Using the decorator
@stopwatch
def process_data(items, multiplier=1):
time.sleep(0.2) # simulate work
return sum(items) * multiplier
# Function execution is automatically timed
result = process_data([1, 2, 3, 4], multiplier=2)
# Prints timing information automaticallyfrom stw import Stopwatch
import time
# Timing nested operations
with Stopwatch(name="outer", verbose=True) as outer:
time.sleep(0.5) # some initial work
with Stopwatch(name="inner", verbose=True) as inner:
time.sleep(0.8) # nested operation
time.sleep(0.3) # more outer work
# Access timing information from both stopwatches
print(f"Inner operation: {inner.elapsed_total():.2f}s")
print(f"Total with overhead: {outer.elapsed_total():.2f}s")from stw import Stopwatch
import time
sw = Stopwatch(name="advanced")
# Record some operations
sw.lap("first")
time.sleep(0.5)
sw.lap("second")
time.sleep(0.8)
sw.lap("third")
# Get time since a specific lap
time_since_second = sw.elapsed_since_lap("second")
print(f"Time since 'second' lap: {time_since_second:.2f}s")
# Get time until a specific lap
time_until_second = sw.elapsed_total("second")
print(f"Time until 'second' lap: {time_until_second:.2f}s")
# Access all recorded laps
for lap_name, timestamp, total_time, lap_time in sw.laps:
print(f"Lap '{lap_name}': {lap_time:.2f}s (Total: {total_time:.2f}s)")
# Visual representation
print(sw) # Shows current state with elapsed time
sw.print_diagram() # Prints a visual diagram of all lapsStopwatch(name="stw", verbose=False): Create a new stopwatchname: Name for this stopwatch (useful for identifying in output)verbose: When True, automatically prints lap timings
-
lap(lap_name=None) -> tuple[float, float]: Record a lap, returns (total_time, lap_time) -
get_lap(index=None, name=None) -> tuple[float, float, float]: Get (timestamp, total_time, lap_time) by index or name -
elapsed_until_lap(name=None) -> float: Get time until the last lap or a specific lap -
elapsed_since_lap(name=None) -> float: Get time since the last lap or a specific lap -
time_function(func, *args, **kwargs) -> tuple[float, any]: Time a function execution -
print_diagram(): Print a visual representation of lap times
laps -> list[tuple[str, float, float, float]]: Access all recorded laps- Each lap is a tuple of (lap_name, timestamp, total_time, lap_time)
@stopwatch: Decorator to automatically time a function
The library raises appropriate exceptions for invalid operations:
ValueError: When accessing invalid laps or providing invalid arguments
Contributions are welcome! Please feel free to submit a Pull Request.
MIT License