This repository provides a reference implementation of DIGNN as described in the paper "Implicit Graph Neural Diffusion Based on Constrained Dirichlet Energy Minimization" which has been presented at NeurIPS 2023 New Frontiers in Graph Learning Workshop.
- Install PyTorch >= 1.7.0
- Install PyTorch Geometric >= 1.7.0
We provide some examples for running experiments for different tasks on different datasets:
cd nodeclassification
For chameleon and squirrel datasets,
python main.py --input chameleon --model Neural --mu 2.2 --preprocess adj --max_iter 10 --dropout 0.5 --lr 0.01 --weight_decay 0
For PPI dataset,
python main_ppi.py --model Neural --dropout 0.1 --epoch 1000 --num_hid 512 --lr 0.01 --mu 2 --weight_decay 0 --max_iter 10
cd graphclassification
python main.py --input MUTAG --model Neural --mu 1.25 --max_iter 20 --num_hid 128 --lr 0.001 --weight_decay 0 --epochs 1000
If you find DIGNN useful in your research, please cite our paper:
@article{DBLP:journals/corr/abs-2308-03306,
author = {Guoji Fu and
Mohammed Haroon Dupty and
Yanfei Dong and
Lee Wee Sun},
title = {Implicit Graph Neural Diffusion Based on Constrained Dirichlet Energy
Minimization},
journal = {CoRR},
volume = {abs/2308.03306},
year = {2023},
url = {https://doi.org/10.48550/arXiv.2308.03306},
doi = {10.48550/ARXIV.2308.03306},
eprinttype = {arXiv},
eprint = {2308.03306},
timestamp = {Mon, 21 Aug 2023 17:38:10 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2308-03306.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}