This package is designed for automating interactions with Android devices. Whether you're developing mobile applications, performing UI testing, or exploring Android internals, this toolkit provides an extensive set of functionalities to streamline your workflow.
Capture device screens at high speed using native tools, providing quick access to visual information.
Dive deep into the Android UI hierarchy, extracting valuable data such as element properties, text, and screen coordinates.
Automate device interactions, including tapping on elements, sending events, and more, allowing for efficient UI testing and exploration.
Employ advanced color search algorithms to identify specific colors within screenshots, enabling precise element identification.
Detect and interact with shapes and color clusters, facilitating complex automation scenarios.
Utilize template matching techniques for recognizing predefined image patterns on the device screen.
Leverage Tesseract OCR to extract text from screenshots, enabling text-based automation and validation.
Perform fuzzy matching between strings, enhancing the accuracy of string-based comparisons in automation workflows.
Record device input events, save them for future use, and replay them to automate repetitive tasks.
https://github.com/hansalemaos/usefuladb
import cv2
from usefuladbplus import activate_pandas_extensions, AdbControlPlus
# If the pandas DataFrames get printed slowly, consider using PrettyColorPrinter
from PrettyColorPrinter import add_printer
add_printer(1)
# Activates custom extensions
# Each module corresponds to a specific extension and must be installed separately using pip.
# plus_find_shapes - pip install multiprocshapefinder
# plus_template_matching - pip install needlefinder
# plus_color_search_c - pip install chopchopcolorc
# plus_color_cluster - pip install locatecolorcluster
# plus_count_all_colors - pip install colorcountcython
# plus_count_all_colors_coords - pip install colorcountcython
# plus_fuzzy_merge - pip install a_pandas_ex_fuzzymerge
# plus_tesser_act - pip install multitessiocr
activate_pandas_extensions(modules=(
"plus_find_shapes",
"plus_template_matching",
"plus_color_search_c",
"plus_color_cluster",
"plus_count_all_colors",
"plus_count_all_colors_coords",
"plus_fuzzy_merge",
"plus_tesser_act",
))
addr = "127.0.0.1:5695"
adb_path = r"C:\Android\android-sdk\platform-tools\adb.exe"
# To connect to all devices at once, you can use this static method (Windows only):
AdbControlPlus.connect_to_all_tcp_devices_windows(
adb_path=adb_path,
)
adb = AdbControlPlus(
adb_path=adb_path,
device_serial=addr,
use_busybox=False,
connect_to_device=True,
invisible=True,
print_stdout=True,
print_stderr=True,
limit_stdout=3,
limit_stderr=3,
limit_stdin=None,
convert_to_83=True,
wait_to_complete=0.1,
flush_stdout_before=True,
flush_stdin_before=True,
flush_stderr_before=True,
exitcommand="xxxCOMMANDxxxDONExxx",
capture_stdout_stderr_first=True,
global_cmd=False,
global_cmd_timeout=10,
use_eval=True, # executes commands using eval - which is recommended - since it is the fastest version - check out https://github.com/hansalemaos/usefuladb for more information about the connection
eval_timeout=180, # timeout for eval (stdout/stderr netcat data transfer)
)
# Starting point is always a dump from either the activities or uiautomator
# Advantages of the Activities Dump:
# - Very fast
# - Reliable, rarely fails
# - Includes information that UiAutomator doesn't have
# Disadvantages:
# - Generally provides less information than UiAutomator
# - Lacks content/text capture functionality
# - Elements from background processes might disturb the accuracy of the dump
df = adb.plus_activity_elements_dump(
with_screenshot=True,
screenshot=None,
with_sendevent=False,
)
# The resulting dataframe should look like this:
# aa_start_x aa_start_y aa_center_x aa_center_y aa_area aa_end_x aa_end_y aa_width aa_height aa_start_x_relative aa_start_y_relative aa_end_x_relative aa_end_y_relative aa_coords aa_int_coords aa_classname aa_hashcode aa_element_id aa_mid aa_visibility aa_focusable aa_enabled aa_drawn aa_scrollbars_horizontal aa_scrollbars_vertical aa_clickable aa_long_clickable aa_context_clickable aa_pflag_is_root_namespace aa_pflag_focused aa_pflag_selected aa_pflag_prepressed aa_pflag_hovered aa_pflag_activated aa_pflag_invalidated aa_pflag_dirty_mask aa_is_parent aa_view_index aa_aa_parents aa_element_index aa_screenshot ff_input_tap ff_sendevent_event4 ff_sendevent_event5
# 0 343 577 352 586 324 361 595 18 18 60 2 78 20 60,2-78,20 (60, 2, 78, 20) android.widget.ImageView #7f08011b app:id/popup_image_one fb7739e V . E D . . . . . . . . . . . I D True 0 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) 0 [[[255 255 352, 586 352, 586 352, 586
# 1 260 661 323 680 4953 387 700 127 39 0 113 127 152 0,113-127,152 (0, 113, 127, 152) android.widget.TextView #7f080060 app:id/app_name_one 8a8e7f V . E D . . . . . . . . . . . . . True 0 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 1 [[[255 255 323, 680 323, 680 323, 680
# 2 470 577 479 586 324 488 595 18 18 60 2 78 20 60,2-78,20 (60, 2, 78, 20) android.widget.ImageView #7f08011e app:id/popup_image_two da32baa I . E D . . . . . . . . . . . I D True 0 (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15) 2 [[[255 255 479, 586 479, 586 479, 586
# Advantages of the UiAutomator Dump:
# - Text capture
# - Large quantity of items
# - Very accurate
# Disadvantages:
# - May fail if there is too much activity on the screen
# - Sometimes takes a considerable amount of time
df = adb.plus_uidump(
timeout=60,
with_screenshot=True,
screenshot=None,
nice=False,
su=False,
with_sendevent=True,
)
# This method addresses the timeout issue in UiAutomator when there is too much activity during XML dumping.
# It freezes the PID (Process ID) before launching UiAutomator.
# Ensure that you block the correct PID; blocking the wrong one may cause the process to freeze completely,
# resulting in UiAutomator being unable to dump anything.
# Here is an example of performing a dump with the Kiwi Browser using this approach.
df = adb.plus_uidump_with_freeze(
procregex_for_lsof=rb"^\s*dboxed_process.*kiwi",
timeout=15,
with_screenshot=True,
screenshot=None,
with_sendevent=True,
)
# All columns starting with 'ff' represent functions.
# You can filter the object you want to interact with using the following example:
filtered_df = df.loc[df.aa_element_id.str.contains('refresh_.*', na=False, regex=True)]
# Clicking is as simple as:
filtered_df.ff_input_tap.iloc[0]()
# An example of using 'sendevent' (only possible with SU privileges):
df_with_sendevent = adb.plus_activity_elements_dump(
with_screenshot=True,
screenshot=None,
with_sendevent=True,
)
# Performing a 'sendevent' action on the filtered element:
df_with_sendevent.loc[filtered_df.index[0]].ff_sendevent_event4.iloc[0]()
# Screenshots can be saved to a folder using the following command:
# The folder will be created if it does not exist.
# Example:
df.plus_save_screenshots("C:\\dumpscreenshotstest2")
# Uses a very fast algorithm written in C that searches for RGB colors in images.
dfcolors = df.plus_color_search_c(
colors2find=(
(26, 115, 232),
(70, 70, 73),
),
column="aa_screenshot",
cpus=5,
chunks=1,
print_stderr=True,
print_stdout=False,
usecache=True,
with_sendevent=True
)
# It returns a copy of the DataFrame with at least 4 new columns (more than 4 if with_sendevent is True):
# aa_tag aa_index aa_text aa_resource-id aa_class aa_package aa_content-desc aa_checkable aa_checked aa_clickable aa_enabled aa_focusable aa_focused aa_scrollable aa_long-clickable aa_password aa_selected aa_bounds aa_rotation aa_all_parents aa_all_children aa_start_x aa_start_y aa_end_x aa_end_y aa_area aa_center_x aa_center_y aa_width aa_height aa_ratio aa_screenshot ff_input_tap ff_sendevent_event4 ff_sendevent_event5 aa_colorsearch_c aa_csearch_mean_x aa_csearch_mean_y ff_colormean_input_tap ff_colormean_sendevent_event4 ff_colormean_sendevent_event5
# 2 node 0 android.widget.FrameLayout com.kiwibrowser.browser False False False True False False False False False False (0, 0, 1280, 720) 0 () (4,) 0 0 1280 720 921600 640 360 1280 720 1.777778 [[[253, 249, 247], [253, 2... 640, 360 640, 360 640, 360 [[534, 872], [534, 873], [... 903.0 549.0 903, 549 903, 549 903, 549
# 3 node 0 android.widget.LinearLayout com.kiwibrowser.browser False False False True False False False False False False (0, 0, 1280, 720) 0 () (5,) 0 0 1280 720 921600 640 360 1280 720 1.777778 [[[253, 249, 247], [253, 2... 640, 360 640, 360 640, 360 [[534, 872], [534, 873], [... 903.0 549.0 903, 549 903, 549 903, 549
# 4 node 0 android.widget.FrameLayout com.kiwibrowser.browser False False False True False False False False False False (0, 24, 1280, 720) 0 (2,) (6,) 0 24 1280 720 890880 640 372 1280 696 1.83908 [[[250, 243, 239], [250, 2... 640, 372 640, 372 640, 372 [[534, 872], [534, 873], [... 903.0 573.0 903, 573 903, 573 903, 573
# If you want to apply the search only to some elements (usually it is not necessary to filter all elements in the whole dataframe),
# you can use slicing:
# Apply color search to the first 10 elements of the DataFrame.
dfcolors = df[:10].plus_color_search_c(
colors2find=(
(26, 115, 232),
# (70, 70, 73),
),
column="aa_screenshot",
cpus=5,
chunks=1,
print_stderr=True,
print_stdout=False,
usecache=True,
)
# You can also cluster colors if clicking on the mean value is too risky for you:
# Perform color clustering on the DataFrame.
clustercordf = df.plus_color_cluster(
colors=((26, 115, 232),),
reverse_colors=True, # input is BGR, but you can reverse the colors
backend="C", # C is much faster than scipy, but if the array gets too big for your memory, the process crashes
memorylimit_mb=10000,
eps=3,
min_samples=10,
algorithm="auto",
leaf_size=30,
n_jobs=5,
max_width=100,
max_height=100,
interpolation=cv2.INTER_NEAREST,
# cv2.INTER_NEAREST is the best here, since it doesn't change the color, it is better not to use cv2.INTER_LANCZOS4
column="aa_screenshot",
with_sendevent=True,
)
# You can click on a cluster like this:
clustercordf.ff_cluster_input_tap.iloc[3]()
# or with sendevent (SU!!)
clustercordf.ff_cluster_sendevent_event4.iloc[0]()
# Results can be seen like this:
clustercordf.plus_save_screenshots(r'C:\vsvfddds')
# You can also search for shapes:
# Sort the DataFrame by "aa_area" in descending order, select a subset, and perform shape finding.
df4 = (
df.sort_values(by="aa_area", ascending=False)
.iloc[12:20]
.plus_find_shapes(
with_draw_function=True,
threshold1=10,
threshold2=90,
approxPolyDPvar=0.01,
cpus=5,
chunks=1,
print_stderr=True,
print_stdout=False,
usecache=True,
with_sendevent=True
)
)
# The resulting DataFrame contains information about the found shapes.
# Results can be saved to HDD and checked like this:
# You need to pass with_draw_function=True when you call plus_find_shapes
# Add a column "aa_screenshot" with the drawn shapes.
df4['aa_screenshot'] = df4.ff_drawn_shape.apply(lambda x: x())
# or
# Save the screenshots to a folder.
df4.plus_save_screenshots('c:\\shapescs')
# Define a dictionary with needle images and their file paths.
needles = {
'b1': r"C:\scrfadx\36.png",
'b2': r"C:\scrfadx\42.png",
'b3': r"C:\scrfadx\45.png",
'b4': r"C:\scrfadx\48.png",
}
# Apply template matching on the DataFrame using the defined needle images.
dftemp = df.plus_template_matching(
needles,
with_sendevent=True,
with_image_data=True,
thresh=0.9,
pad_input=False,
mode="constant",
constant_values=0,
usecache=True,
processes=5,
chunks=1,
print_stdout=False,
print_stderr=True,
column="aa_screenshot",
)
# The resulting DataFrame contains information about the matched templates.
# aa_tag aa_index aa_text aa_resource-id aa_class aa_package aa_content-desc aa_checkable aa_checked aa_clickable aa_enabled aa_focusable aa_focused aa_scrollable aa_long-clickable aa_password aa_selected aa_bounds aa_rotation aa_all_parents aa_all_children aa_start_x aa_start_y aa_end_x aa_end_y aa_area aa_center_x aa_center_y aa_width aa_height aa_ratio aa_screenshot ff_input_tap ff_sendevent_event4 ff_sendevent_event5 aa_realindex aa_needle_abs_start_x aa_needle_abs_start_y aa_needle_abs_end_x aa_needle_abs_end_y aa_needle_abs_center_x aa_needle_abs_center_y aa_img_index aa_needle_start_x aa_needle_start_y aa_needle_scale_factor aa_needle_width aa_needle_height aa_needle_match aa_needle_end_x aa_needle_end_y aa_needle_center_x aa_needle_center_y aa_needle_area aa_needle_needlename aa_needle_img_index aa_needle_screenshot aa_needle_r aa_needle_g aa_needle_b ff_needle_input_tap ff_needle_sendevent_event4 ff_needle_sendevent_event5
# 0 node 0 android.widget.FrameLayout com.kiwibrowser.browser False False False True False False False False False False (0, 0, 1280, 720) 0 () (4,) 0 0 1280 720 921600 640 360 1280 720 1.777778 [[[253, 249, 247], [253, 2... 640, 360 640, 360 640, 360 2 866 557 939 589 902.5 573 2 866 557 100 73 32 1.0 939 589 902.5 573.0 2336 b1 0 [[[255, 255, 255], [255, 2... 54.235873 131.822346 234.391267 902.5, 573.0 902.5, 573.0 902.5, 573.0
# 1 node 0 android.widget.FrameLayout com.kiwibrowser.browser False False False True False False False False False False (0, 0, 1280, 720) 0 () (4,) 0 0 1280 720 921600 640 360 1280 720 1.777778 [[[253, 249, 247], [253, 2... 640, 360 640, 360 640, 360 2 143 63 191 119 167.0 91 2 143 63 100 48 56 1.0 191 119 167.0 91.0 2688 b3 0 [[[250, 243, 239], [250, 2... 54.235873 131.822346 234.391267 167.0, 91.0 167.0, 91.0 167.0, 91.0
# 2 node 0 android.widget.FrameLayout com.kiwibrowser.browser False False False True False False False False False False (0, 0, 1280, 720) 0 () (4,) 0 0 1280 720 921600 640 360 1280 720 1.777778 [[[253, 249, 247], [253, 2... 640, 360 640, 360 640, 360 2 191 67 239 115 215.0 91 2 191 67 100 48 48 1.0 239 115 215.0 91.0 2304 b4 0 [[[255, 255, 255], [255, 2... 54.235873 131.822346 234.391267 215.0, 91.0 215.0, 91.0 215.0, 91.0
# Clicking on an element:
# Execute the sendevent method for the first matched needle element.
dftemp.ff_needle_sendevent_event4.iloc[0]()
# Counts all colors (no clicking methods, because the frame is too big)
# Count the occurrence of each color in the screenshots.
dfallcolors = df.plus_count_all_colors(column="aa_screenshot")
# Returns all coordinates for each color (no clicking methods, because the frame is too big)
# Count and retrieve the coordinates for each color in the screenshots.
dfallcolorscount = df.plus_count_all_colors_coords(column="aa_screenshot")
# OCR on images with tesseract
# Apply OCR (Optical Character Recognition) using Tesseract on the screenshots.
dftes = df.plus_tesser_act(
column="aa_screenshot",
tesser_path=r"C:\Program Files\Tesseract-OCR\tesseract.exe",
add_after_tesseract_path="",
add_at_the_end="-l eng+por --psm 3",
processes=5,
chunks=1,
print_stdout=False,
print_stderr=False,
)
# Perform a click action if the recognized text is "Bingo."
dftes.loc[dftes.tt_text == "Bingo"].tt_sendevent_event4.iloc[0]()
import string
import random
from rapidfuzz import fuzz
# Dummy data
# Generate a list of strings for testing.
stringlisttest = [
str(x).replace(random.choice(x), random.choice(string.ascii_letters))
for x in df['aa_class'].unique()
]
# Perform fuzzy matching between the generated list and the 'aa_class' column in the DataFrame.
dffuzzy = df.plus_fuzzy_merge(
stringlisttest, column="aa_class", scorer=fuzz.WRatio, min_value=0
)
# Print the resulting DataFrame with selected columns for demonstration.
# print(dffuzzy[['aa_class_x', 'aa_class_y', 'concat_value']][:5].to_string())
# aa_class_x aa_class_y concat_value
# 0 android.widget.FrameLayout anWroiW.wiWget.FrameLayout 88
# 1 android.widget.LinearLayout aedroid.widget.LieearLayout 93
# 2 android.widget.FrameLayout anWroiW.wiWget.FrameLayout 88
# 3 android.widget.FrameLayout anWroiW.wiWget.FrameLayout 88
# 4 android.widget.FrameLayout anWroiW.wiWget.FrameLayout 88
# How to record and replay actions (requires SU!)
# Get all input devices
# List all available input devices, including event files.
adb.sh_list_dev_input()
# ['/dev/input/event0',
# '/dev/input/event1',
# '/dev/input/event2',
# '/dev/input/event3',
# '/dev/input/event4',
# '/dev/input/event5',
# '/dev/input/event6',
# '/dev/input/mice']
# Record and save events to a specified folder on the SD card.
event = adb.plus_record_and_save_to_sdcard(
tmpfolder_device="/sdcard/clickevent21",
tmpfolder_local=None,
device="event4",
print_output=True,
add_closing_command=True,
clusterevents=16,
)
# event
# Out[18]: su -c 'cat /sdcard/clickevent21/cmd.txt | sh'
# The recorded events are now saved on the SD card and can be executed as follows:
# Execute the recorded events using the saved command.
adb.execute_sh_command(event.execution)
# or
# Execute the recorded events using the command directly.
adb.execute_sh_command("""su -c 'cat /sdcard/clickevent21/cmd.txt | sh'""")
# Capture screen frames using screenrecord, convert them to numpy arrays, and display using OpenCV
# Iterate through frames captured with fast screenshot method
for image in adb.plus_start_fast_screenshot_iter(
bitrate="20M",
screenshotbuffer=10,
go_idle=0,
):
# Display the captured frame using OpenCV
cv2.imshow("CV2 WINDOW", image)
# Break the loop if 'q' key is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# Close OpenCV windows when the loop is exited
cv2.destroyAllWindows()