Skip to content

Solution of 1D and 2D PDEs using Physics Informed Neural Networks (PINNs)

Notifications You must be signed in to change notification settings

hasifnumerics/PINN-Report

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 

Repository files navigation

This repository was created to showcase an independent research report on the concept of Physics Informed Neural Networks (PINNs). Here I explain briefly the concepts of Backward Propagation, Forward Propagation, Loss Function formulation, optimization etc.

I then demonstrate a PiNNs approach to approximating the solutions to the 1D heat equation using PyTorch and compare the behavior of solutions based on the number of training steps.

Physics-Informed Neural Networks for 1D Heat Equation

We aim to solve the 1D heat equation using Physics-Informed Neural Networks. The mathematical model we are considering is:

The 1D heat equation is given by:

u_t = u_{xx}

Where:

  • u_t denotes the partial derivative of u with respect to t.
  • u_{xx} denotes the second partial derivative of u with respect to x.

Initial and Boundary Conditions

The initial condition is:

u(x, 0) = sin(πx)

And the boundary conditions are:

  • At x = 0: u(0, t) = 0
  • At x = 1: u(1, t) = 0

Alt text

2D PDE Approximation Using PINNs: Navier-Stokes Equations

Consider the Navier-Stokes equations, which describe the motion of a fluid:

Navier-Stokes Equations:

  • Momentum equation: ρ(∂u/∂t + u · ∇u) = -∇p + μ∇²u + f
  • Continuity equation: ∇ · u = 0

Where:

  • u is the velocity field.
  • p is the pressure.
  • ρ is the density.
  • μ is the dynamic viscosity.
  • f is the body force.

We implement the Physics-Informed Neural Network (PINN) solution to the 2D Navier-Stokes problem. You can find the code and plot the pressure field here.

To read further on my independent research on PINNs, please refer to this report.

About

Solution of 1D and 2D PDEs using Physics Informed Neural Networks (PINNs)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published