forked from bitcoin/bitcoin
-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge bitcoin#28263: Add fuzz test for FSChaCha20Poly1305, AEADChacha…
…20Poly1305 8607773 Add fuzz test for FSChaCha20Poly1305 (stratospher) c807f33 Add fuzz test for AEADChacha20Poly1305 (stratospher) Pull request description: This PR adds fuzz tests for `AEADChaCha20Poly1305` and `FSChaCha20Poly1305` introduced in bitcoin#28008. Run using: ``` $ FUZZ=crypto_aeadchacha20poly1305 src/test/fuzz/fuzz $ FUZZ=crypto_fschacha20poly1305 src/test/fuzz/fuzz ``` ACKs for top commit: dergoegge: tACK 8607773 marcofleon: Tested ACK 8607773. Ran both targets for ~200 CPU hours. Coverage of intended targets looks good to me. The simulation of damaged keys and checks that follow seem useful as well. Tree-SHA512: b6b85661d896e653caeed330f941fde665fc2bbd97ecd340808a3f365c469fe9134aa77316569a771dc36d1158cac1a5f76700bcfc45fff12aef07562e48feb9
- Loading branch information
Showing
2 changed files
with
201 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,200 @@ | ||
// Copyright (c) 2020-2021 The Bitcoin Core developers | ||
// Distributed under the MIT software license, see the accompanying | ||
// file COPYING or http://www.opensource.org/licenses/mit-license.php. | ||
|
||
#include <crypto/chacha20poly1305.h> | ||
#include <random.h> | ||
#include <span.h> | ||
#include <test/fuzz/FuzzedDataProvider.h> | ||
#include <test/fuzz/fuzz.h> | ||
#include <test/fuzz/util.h> | ||
|
||
#include <cstddef> | ||
#include <cstdint> | ||
#include <vector> | ||
|
||
constexpr static inline void crypt_till_rekey(FSChaCha20Poly1305& aead, int rekey_interval, bool encrypt) | ||
{ | ||
for (int i = 0; i < rekey_interval; ++i) { | ||
std::byte dummy_tag[FSChaCha20Poly1305::EXPANSION] = {{}}; | ||
if (encrypt) { | ||
aead.Encrypt(Span{dummy_tag}.first(0), Span{dummy_tag}.first(0), dummy_tag); | ||
} else { | ||
aead.Decrypt(dummy_tag, Span{dummy_tag}.first(0), Span{dummy_tag}.first(0)); | ||
} | ||
} | ||
} | ||
|
||
FUZZ_TARGET(crypto_aeadchacha20poly1305) | ||
{ | ||
FuzzedDataProvider provider{buffer.data(), buffer.size()}; | ||
|
||
auto key = provider.ConsumeBytes<std::byte>(32); | ||
key.resize(32); | ||
AEADChaCha20Poly1305 aead(key); | ||
|
||
// Initialize RNG deterministically, to generate contents and AAD. We assume that there are no | ||
// (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid | ||
// reading the actual data for those from the fuzzer input (which would need large amounts of | ||
// data). | ||
InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>()); | ||
|
||
LIMITED_WHILE(provider.ConsumeBool(), 10000) | ||
{ | ||
// Mode: | ||
// - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix. | ||
// - Bit 2: whether this ciphertext will be corrupted (making it the last sent one) | ||
// - Bit 3-4: controls the maximum aad length (max 511 bytes) | ||
// - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons) | ||
unsigned mode = provider.ConsumeIntegral<uint8_t>(); | ||
bool use_splits = mode & 1; | ||
bool damage = mode & 4; | ||
unsigned aad_length_bits = 3 * ((mode >> 3) & 3); | ||
unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1); | ||
unsigned length_bits = 2 * ((mode >> 5) & 7); | ||
unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1); | ||
// Generate aad and content. | ||
auto aad = rng.randbytes<std::byte>(aad_length); | ||
auto plain = rng.randbytes<std::byte>(length); | ||
std::vector<std::byte> cipher(length + AEADChaCha20Poly1305::EXPANSION); | ||
// Generate nonce | ||
AEADChaCha20Poly1305::Nonce96 nonce = {(uint32_t)rng(), rng()}; | ||
|
||
if (use_splits && length > 0) { | ||
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length); | ||
aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, nonce, cipher); | ||
} else { | ||
aead.Encrypt(plain, aad, nonce, cipher); | ||
} | ||
|
||
// Test Keystream output | ||
std::vector<std::byte> keystream(length); | ||
aead.Keystream(nonce, keystream); | ||
for (size_t i = 0; i < length; ++i) { | ||
assert((plain[i] ^ keystream[i]) == cipher[i]); | ||
} | ||
|
||
std::vector<std::byte> decrypted_contents(length); | ||
bool ok{false}; | ||
|
||
// damage the key | ||
unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31); | ||
std::byte damage_val{(uint8_t)(1U << (key_position & 7))}; | ||
std::vector<std::byte> bad_key = key; | ||
bad_key[key_position] ^= damage_val; | ||
|
||
AEADChaCha20Poly1305 bad_aead(bad_key); | ||
ok = bad_aead.Decrypt(cipher, aad, nonce, decrypted_contents); | ||
assert(!ok); | ||
|
||
// Optionally damage 1 bit in either the cipher (corresponding to a change in transit) | ||
// or the aad (to make sure that decryption will fail if the AAD mismatches). | ||
if (damage) { | ||
unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U); | ||
unsigned damage_pos = damage_bit >> 3; | ||
std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))}; | ||
if (damage_pos >= cipher.size()) { | ||
aad[damage_pos - cipher.size()] ^= damage_val; | ||
} else { | ||
cipher[damage_pos] ^= damage_val; | ||
} | ||
} | ||
|
||
if (use_splits && length > 0) { | ||
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length); | ||
ok = aead.Decrypt(cipher, aad, nonce, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index)); | ||
} else { | ||
ok = aead.Decrypt(cipher, aad, nonce, decrypted_contents); | ||
} | ||
|
||
// Decryption *must* fail if the packet was damaged, and succeed if it wasn't. | ||
assert(!ok == damage); | ||
if (!ok) break; | ||
assert(decrypted_contents == plain); | ||
} | ||
} | ||
|
||
FUZZ_TARGET(crypto_fschacha20poly1305) | ||
{ | ||
FuzzedDataProvider provider{buffer.data(), buffer.size()}; | ||
|
||
uint32_t rekey_interval = provider.ConsumeIntegralInRange<size_t>(32, 512); | ||
auto key = provider.ConsumeBytes<std::byte>(32); | ||
key.resize(32); | ||
FSChaCha20Poly1305 enc_aead(key, rekey_interval); | ||
FSChaCha20Poly1305 dec_aead(key, rekey_interval); | ||
|
||
// Initialize RNG deterministically, to generate contents and AAD. We assume that there are no | ||
// (potentially buggy) edge cases triggered by specific values of contents/AAD, so we can avoid | ||
// reading the actual data for those from the fuzzer input (which would need large amounts of | ||
// data). | ||
InsecureRandomContext rng(provider.ConsumeIntegral<uint64_t>()); | ||
|
||
LIMITED_WHILE(provider.ConsumeBool(), 10000) | ||
{ | ||
// Mode: | ||
// - Bit 0: whether to use single-plain Encrypt/Decrypt; otherwise use a split at prefix. | ||
// - Bit 2: whether this ciphertext will be corrupted (making it the last sent one) | ||
// - Bit 3-4: controls the maximum aad length (max 511 bytes) | ||
// - Bit 5-7: controls the maximum content length (max 16383 bytes, for performance reasons) | ||
unsigned mode = provider.ConsumeIntegral<uint8_t>(); | ||
bool use_splits = mode & 1; | ||
bool damage = mode & 4; | ||
unsigned aad_length_bits = 3 * ((mode >> 3) & 3); | ||
unsigned aad_length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << aad_length_bits) - 1); | ||
unsigned length_bits = 2 * ((mode >> 5) & 7); | ||
unsigned length = provider.ConsumeIntegralInRange<unsigned>(0, (1 << length_bits) - 1); | ||
// Generate aad and content. | ||
auto aad = rng.randbytes<std::byte>(aad_length); | ||
auto plain = rng.randbytes<std::byte>(length); | ||
std::vector<std::byte> cipher(length + FSChaCha20Poly1305::EXPANSION); | ||
|
||
crypt_till_rekey(enc_aead, rekey_interval, true); | ||
if (use_splits && length > 0) { | ||
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length); | ||
enc_aead.Encrypt(Span{plain}.first(split_index), Span{plain}.subspan(split_index), aad, cipher); | ||
} else { | ||
enc_aead.Encrypt(plain, aad, cipher); | ||
} | ||
|
||
std::vector<std::byte> decrypted_contents(length); | ||
bool ok{false}; | ||
|
||
// damage the key | ||
unsigned key_position = provider.ConsumeIntegralInRange<unsigned>(0, 31); | ||
std::byte damage_val{(uint8_t)(1U << (key_position & 7))}; | ||
std::vector<std::byte> bad_key = key; | ||
bad_key[key_position] ^= damage_val; | ||
|
||
FSChaCha20Poly1305 bad_fs_aead(bad_key, rekey_interval); | ||
crypt_till_rekey(bad_fs_aead, rekey_interval, false); | ||
ok = bad_fs_aead.Decrypt(cipher, aad, decrypted_contents); | ||
assert(!ok); | ||
|
||
// Optionally damage 1 bit in either the cipher (corresponding to a change in transit) | ||
// or the aad (to make sure that decryption will fail if the AAD mismatches). | ||
if (damage) { | ||
unsigned damage_bit = provider.ConsumeIntegralInRange<unsigned>(0, (cipher.size() + aad.size()) * 8U - 1U); | ||
unsigned damage_pos = damage_bit >> 3; | ||
std::byte damage_val{(uint8_t)(1U << (damage_bit & 7))}; | ||
if (damage_pos >= cipher.size()) { | ||
aad[damage_pos - cipher.size()] ^= damage_val; | ||
} else { | ||
cipher[damage_pos] ^= damage_val; | ||
} | ||
} | ||
|
||
crypt_till_rekey(dec_aead, rekey_interval, false); | ||
if (use_splits && length > 0) { | ||
size_t split_index = provider.ConsumeIntegralInRange<size_t>(1, length); | ||
ok = dec_aead.Decrypt(cipher, aad, Span{decrypted_contents}.first(split_index), Span{decrypted_contents}.subspan(split_index)); | ||
} else { | ||
ok = dec_aead.Decrypt(cipher, aad, decrypted_contents); | ||
} | ||
|
||
// Decryption *must* fail if the packet was damaged, and succeed if it wasn't. | ||
assert(!ok == damage); | ||
if (!ok) break; | ||
assert(decrypted_contents == plain); | ||
} | ||
} |