Skip to content

heddal/master2022

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Master's Thesis 2022

This is the code for a Master's Thesis using Russell's Quadrants to unite auditory and visual stimuli. Much of the code is from Zhu et al.'s unpaired image-to-iamage translation. The repository is extended with new code with connects song with images based on their metadata.

Details from the README of the original CycleGAN repository

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Acknowledgments

The image-to-image translation code used in this project is retrieved from pytorch-CycleGAN-and-pix2pix.

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/heddal/master2022
cd master2022
  • Install PyTorch and 0.4+ and other dependencies (e.g., torchvision, visdom and dominate).
    • For pip users, please type the command pip install -r requirements.txt.
    • For Conda users, you can create a new Conda environment using conda env create -f environment.yml.
    • For Docker users, we provide the pre-built Docker image and Dockerfile. Please refer to our Docker page.
    • For Repl users, please click Run on Repl.it.

CycleGAN train/test

  • Download a CycleGAN dataset (e.g. maps):
bash ./datasets/download_cyclegan_dataset.sh maps
  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.
  • To log training progress and test images to W&B dashboard, set the --use_wandb flag with train and test script
  • Train a model:
#!./scripts/train_cyclegan.sh
python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan

To see more intermediate results, check out ./checkpoints/maps_cyclegan/web/index.html.

  • Test the model:
#!./scripts/test_cyclegan.sh
python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan
  • The test results will be saved to a html file here: ./results/maps_cyclegan/latest_test/index.html.

Apply a pre-trained model (CycleGAN)

  • You can download a pretrained model (e.g. horse2zebra) with the following script:
bash ./scripts/download_cyclegan_model.sh horse2zebra
  • The pretrained model is saved at ./checkpoints/{name}_pretrained/latest_net_G.pth. Check here for all the available CycleGAN models.
  • To test the model, you also need to download the horse2zebra dataset:
bash ./datasets/download_cyclegan_dataset.sh horse2zebra
  • Then generate the results using
python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout
  • The option --model test is used for generating results of CycleGAN only for one side. This option will automatically set --dataset_mode single, which only loads the images from one set. On the contrary, using --model cycle_gan requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.

  • For pix2pix and your own models, you need to explicitly specify --netG, --norm, --no_dropout to match the generator architecture of the trained model. See this FAQ for more details.

We provide the pre-built Docker image and Dockerfile that can run this code repo. See docker.

Download pix2pix/CycleGAN datasets and create your own datasets.

Best practice for training and testing your models.

Before you post a new question, please first look at the above Q & A and existing GitHub issues.

Custom Model and Dataset

If you plan to implement custom models and dataset for your new applications, we provide a dataset template and a model template as a starting point.

To help users better understand and use our code, we briefly overview the functionality and implementation of each package and each module.

About

Image-to-Image Translation in PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • HTML 86.4%
  • Python 12.0%
  • Other 1.6%