Skip to content

hhelwich/m4th

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

m4th . . .

A library to use in the browser or node.js. It currently contains:

  • Basic Matrix operations
  • LU decomposition
  • UD decomposition (optimized cholesky decomposition)

Browser

To use the library in the browser, you need to include this JavaScript file:

<script src="m4th.min.js"></script>

It exports the global m4th object. Now you can access e.g. the matrix constructor with:

var M = m4th.matrix;

The following browsers are tested:

Browser Test Status

node.js

You can install this package with:

npm install m4th

Now you can load e.g. the matrix constructor with:

var M = require('m4th/matrix');

Examples

Matrix Creation

Create a 2x3 matrix (2 rows, 3 columns) and a 4x4 matrix with undefined entries:

var A, B;
A = M(2, 3);
B = M(4);

Create a 2x2 matrix and a 2x3 matrix with the given content:

var A, B;
A = M([
    3,  2,
    1,  0
]);
B = M(2, [
    1,  2,  3,
    4,  5,  7
]);

Matrix Entries

Each matrix has readable rows and columns properties:

console.log('Matrix A has ' + A.rows + ' rows and ' + A.columns + ' columns.');

Matrix entries can be accessed with get() and set() (indices start at 0):

var a = A.get(0, 3); // get entry in row 0 and column 3
A.set(1, 2, 3); // set entry in row 1 and column 2 to value 3

You can chain set():

A.set(1, 0, 3).set(1, 1, 4).set(1, 2, 5);

Imperative / Functional

Calculations on matrices can be done in imperative or functional style. For example the frobenius norm of a matrix A can be calculated imperatively:

var i, j, a, norm;
norm = 0;
for (i = 0; i < A.rows; i += 1) { // iterate matrix rows
  for (j = 0; j < A.columns; j += 1) { // iterate matrix columns
    a = A.get(i, j);
    norm += a * a;
  }
}
norm = Math.sqrt(norm);

But we can do better using each() which takes a callback as an argument:

var norm = 0;
A.each(function (a) { // iterate matrix entries
  norm += a * a;
});
norm = Math.sqrt(norm);

In a more functional style the same can be expressed with map() and reduce():

var square, add, norm;
// helper functions
square = function (x) {
  return x * x;
};
add = function (x, y) {
  return x + y;
};
// calculate norm
norm = Math.sqrt(A.map(square).reduce(add));

This now reads nicer than the imperative approach.

If performance is important, you can remove the map() call (which creates a temporary matrix) and use a single reduce() instead:

var addSquared, norm;
// helper function
addSquared = function (x, y) {
  return x + y * y;
};
// calculate norm
norm = Math.sqrt(A.reduce(addSquared, 0));

Matrix Operations

// calculate some results without changing the matrices A, B and C:
console.log('A*B = ' + A.mult(B));
console.log('B+C = ' + B.add(C));
console.log('C-B = ' + C.minus(B));
console.log('B*3 = ' + B.times(3));
console.log('B^t = ' + B.transp());
console.log('fill B with constant value = ' + B.fill(2));
console.log('copy of A = ' + A.clone());
console.log('A is square? = ' + A.isSquare());
console.log('A has same size as B? = ' + A.isSize(B));

map()

Create a 5x5 hilbert matrix:

var H = M(5).map(function (h, i, j) {
    return 1 / (i + j + 1);
});

LU decomposition

var A, y, LU, x, Ainv;
// create some matrices:
A = M([
    2,  1, -1,
   -3, -1,  2,
   -2,  1,  2
]);
           
y = M(3, [
    8,
  -11,
   -3
]);

// LU decompose matrix A          
LU = m4th.lu(A); // node.js: require('m4th/lu')(A);
// calculate solution for: y = A*x
x = LU.solve(y);
// invert matrix A
Ainv = LU.getInverse();

UD decomposition

var A, y, UD, x;
// create some matrices:
A = M([
    2, 1, 1, 3, 2,
    1, 2, 2, 1, 1,
    1, 2, 9, 1, 5,
    3, 1, 1, 7, 1,
    2, 1, 5, 1, 8
]);
           
y = M(5, [ -2, 4, 3, -5, 1 ]);

// UD decompose matrix A          
UD = m4th.ud(A); // node.js: require('m4th/ud')(A);
// calculate solution for: y = A*x
x = UD.solve(y);

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published