Skip to content

Commit

Permalink
feat: implement PoseLandmarker (#1022)
Browse files Browse the repository at this point in the history
* feat: import PoseDetector / PoseLandmarker protos

* feat: implement PoseLandmarker
  • Loading branch information
homuler authored Sep 2, 2023
1 parent 4c21fa5 commit 01cdd56
Show file tree
Hide file tree
Showing 18 changed files with 592 additions and 0 deletions.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
// Copyright (c) 2023 homuler
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT.

using System.Collections.Generic;

namespace Mediapipe.Tasks.Vision.PoseLandmarker
{
public sealed class PoseLandmarker : Core.BaseVisionTaskApi
{
private const string _IMAGE_IN_STREAM_NAME = "image_in";
private const string _IMAGE_OUT_STREAM_NAME = "image_out";
private const string _IMAGE_TAG = "IMAGE";
private const string _NORM_RECT_STREAM_NAME = "norm_rect_in";
private const string _NORM_RECT_TAG = "NORM_RECT";
private const string _SEGMENTATION_MASK_STREAM_NAME = "segmentation_mask";
private const string _SEGMENTATION_MASK_TAG = "SEGMENTATION_MASK";
private const string _NORM_LANDMARKS_STREAM_NAME = "norm_landmarks";
private const string _NORM_LANDMARKS_TAG = "NORM_LANDMARKS";
private const string _POSE_WORLD_LANDMARKS_STREAM_NAME = "world_landmarks";
private const string _POSE_WORLD_LANDMARKS_TAG = "WORLD_LANDMARKS";
private const string _TASK_GRAPH_NAME = "mediapipe.tasks.vision.pose_landmarker.PoseLandmarkerGraph";

private const int _MICRO_SECONDS_PER_MILLISECOND = 1000;

#pragma warning disable IDE0052 // Remove unread private members
/// <remarks>
/// keep reference to prevent GC from collecting the callback instance.
/// </remarks>
private readonly Tasks.Core.TaskRunner.PacketsCallback _packetCallback;
#pragma warning restore IDE0052

private PoseLandmarker(
CalculatorGraphConfig graphConfig,
Core.RunningMode runningMode,
Tasks.Core.TaskRunner.PacketsCallback packetCallback) : base(graphConfig, runningMode, packetCallback)
{
_packetCallback = packetCallback;
}

/// <summary>
/// Creates an <see cref="PoseLandmarker" /> object from a TensorFlow Lite model and the default <see cref="PoseLandmarkerOptions" />.
///
/// Note that the created <see cref="PoseLandmarker" /> instance is in image mode,
/// for detecting pose landmarks on single image inputs.
/// </summary>
/// <param name="modelPath">Path to the model.</param>
/// <returns>
/// <see cref="PoseLandmarker" /> object that's created from the model and the default <see cref="PoseLandmarkerOptions" />.
/// </returns>
public static PoseLandmarker CreateFromModelPath(string modelPath)
{
var baseOptions = new Tasks.Core.BaseOptions(modelAssetPath: modelPath);
var options = new PoseLandmarkerOptions(baseOptions, runningMode: Core.RunningMode.IMAGE);
return CreateFromOptions(options);
}

/// <summary>
/// Creates the <see cref="PoseLandmarker" /> object from <paramref name="PoseLandmarkerOptions" />.
/// </summary>
/// <param name="options">Options for the pose landmarker task.</param>
/// <returns>
/// <see cref="PoseLandmarker" /> object that's created from <paramref name="options" />.
/// </returns>
public static PoseLandmarker CreateFromOptions(PoseLandmarkerOptions options)
{
var outputStreams = new List<string> {
string.Join(":", _NORM_LANDMARKS_TAG, _NORM_LANDMARKS_STREAM_NAME),
string.Join(":", _POSE_WORLD_LANDMARKS_TAG, _POSE_WORLD_LANDMARKS_STREAM_NAME),
string.Join(":", _IMAGE_TAG, _IMAGE_OUT_STREAM_NAME),
};
if (options.outputSegmentationMasks)
{
outputStreams.Add(string.Join(":", _SEGMENTATION_MASK_TAG, _SEGMENTATION_MASK_STREAM_NAME));
}
var taskInfo = new Tasks.Core.TaskInfo<PoseLandmarkerOptions>(
taskGraph: _TASK_GRAPH_NAME,
inputStreams: new List<string> {
string.Join(":", _IMAGE_TAG, _IMAGE_IN_STREAM_NAME),
string.Join(":", _NORM_RECT_TAG, _NORM_RECT_STREAM_NAME),
},
outputStreams: outputStreams,
taskOptions: options);

return new PoseLandmarker(
taskInfo.GenerateGraphConfig(options.runningMode == Core.RunningMode.LIVE_STREAM),
options.runningMode,
BuildPacketsCallback(options.resultCallback));
}

/// <summary>
/// Performs pose landmarks detection on the provided MediaPipe Image.
///
/// Only use this method when the <see cref="PoseLandmarker" /> is created with the image running mode.
/// The image can be of any size with format RGB or RGBA.
/// </summary>
/// <param name="image">MediaPipe Image.</param>
/// <param name="imageProcessingOptions">Options for image processing.</param>
/// <returns>
/// The pose landmarks detection results.
/// </returns>
public PoseLandmarkerResult Detect(Image image, Core.ImageProcessingOptions? imageProcessingOptions = null)
{
var normalizedRect = ConvertToNormalizedRect(imageProcessingOptions, image, roiAllowed: false);

var packetMap = new PacketMap();
packetMap.Emplace(_IMAGE_IN_STREAM_NAME, new ImagePacket(image));
packetMap.Emplace(_NORM_RECT_STREAM_NAME, new NormalizedRectPacket(normalizedRect));
var outputPackets = ProcessImageData(packetMap);

return BuildPoseLandmarkerResult(outputPackets);
}

/// <summary>
/// Performs pose landmarks detection on the provided video frames.
///
/// Only use this method when the PoseLandmarker is created with the video
/// running mode. It's required to provide the video frame's timestamp (in
/// milliseconds) along with the video frame. The input timestamps should be
/// monotonically increasing for adjacent calls of this method.
/// </summary>
/// <returns>
/// The pose landmarks detection results.
/// </returns>
public PoseLandmarkerResult DetectForVideo(Image image, int timestampMs, Core.ImageProcessingOptions? imageProcessingOptions = null)
{
var normalizedRect = ConvertToNormalizedRect(imageProcessingOptions, image, roiAllowed: false);

PacketMap outputPackets = null;
using (var timestamp = new Timestamp(timestampMs * _MICRO_SECONDS_PER_MILLISECOND))
{
var packetMap = new PacketMap();
packetMap.Emplace(_IMAGE_IN_STREAM_NAME, new ImagePacket(image, timestamp));
packetMap.Emplace(_NORM_RECT_STREAM_NAME, new NormalizedRectPacket(normalizedRect).At(timestamp));
outputPackets = ProcessVideoData(packetMap);
}

return BuildPoseLandmarkerResult(outputPackets);
}

/// <summary>
/// Sends live image data to perform pose landmarks detection.
///
/// Only use this method when the PoseLandmarker is created with the live stream
/// running mode. The input timestamps should be monotonically increasing for
/// adjacent calls of this method. This method will return immediately after the
/// input image is accepted. The results will be available via the
/// <see cref="PoseLandmarkerOptions.ResultCallback" /> provided in the <see cref="PoseLandmarkerOptions" />.
/// The <see cref="DetectAsync" /> method is designed to process live stream data such as camera
/// input. To lower the overall latency, pose landmarker may drop the input
/// images if needed. In other words, it's not guaranteed to have output per
/// input image.
public void DetectAsync(Image image, int timestampMs, Core.ImageProcessingOptions? imageProcessingOptions = null)
{
var normalizedRect = ConvertToNormalizedRect(imageProcessingOptions, image, roiAllowed: false);

using (var timestamp = new Timestamp(timestampMs * _MICRO_SECONDS_PER_MILLISECOND))
{
var packetMap = new PacketMap();
packetMap.Emplace(_IMAGE_IN_STREAM_NAME, new ImagePacket(image, timestamp));
packetMap.Emplace(_NORM_RECT_STREAM_NAME, new NormalizedRectPacket(normalizedRect).At(timestamp));

SendLiveStreamData(packetMap);
}
}

private static Tasks.Core.TaskRunner.PacketsCallback BuildPacketsCallback(PoseLandmarkerOptions.ResultCallback resultCallback)
{
if (resultCallback == null)
{
return null;
}

return (PacketMap outputPackets) =>
{
var outImagePacket = outputPackets.At<ImagePacket, Image>(_IMAGE_OUT_STREAM_NAME);
if (outImagePacket == null || outImagePacket.IsEmpty())
{
return;
}

var image = outImagePacket.Get();
var handLandmarkerResult = BuildPoseLandmarkerResult(outputPackets);
var timestamp = outImagePacket.Timestamp().Microseconds() / _MICRO_SECONDS_PER_MILLISECOND;

resultCallback(handLandmarkerResult, image, (int)timestamp);
};
}

private static PoseLandmarkerResult BuildPoseLandmarkerResult(PacketMap outputPackets)
{
var poseLandmarksProtoPacket =
outputPackets.At<NormalizedLandmarkListVectorPacket, List<NormalizedLandmarkList>>(_NORM_LANDMARKS_STREAM_NAME);
if (poseLandmarksProtoPacket.IsEmpty())
{
return PoseLandmarkerResult.Empty();
}

var poseLandmarksProto = poseLandmarksProtoPacket.Get();
var poseWorldLandmarksProto = outputPackets.At<LandmarkListVectorPacket, List<LandmarkList>>(_POSE_WORLD_LANDMARKS_STREAM_NAME).Get();
var segmentationMasks = outputPackets.At<ImageVectorPacket, List<Image>>(_SEGMENTATION_MASK_STREAM_NAME)?.Get();

return PoseLandmarkerResult.CreateFrom(poseLandmarksProto, poseWorldLandmarksProto, segmentationMasks);
}
}
}

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit 01cdd56

Please sign in to comment.