Skip to content

Tensorflow implementaion for AutoAttention

License

Notifications You must be signed in to change notification settings

htyqaz/AutoAttention

 
 

Repository files navigation

AutoAttention

Requirements

Please use pip install -r requirements.txt to setup the operating environment in python3.5.
Note that we use DeepCTR package and refer to the implementation of DSIN.

Prepare data

  1. Download Alimama Data: Ad Display/Click Data on Taobao.com
  2. Extract the files into the data/raw_data directory
  3. Follow the code of the data preprocessing in DSIN to preprocess data

Training and Evaluation

Run python train_[model].py [model_type]

  • Sum Pooling: python train_base.py Base
  • MAF-S: python train_base.py Base_All_Fields_Add
  • MAF-C: python train_base.py Base_All_Fields_Concat
  • DIN: python train_din.py DIN
  • DIN+: python train_din.py All_Fields
  • DIEN: python train_dien.py
  • DSIN: python train_dsin.py
  • DotProduct: python train_autoattention.py DotProduct
  • AutoAttention: python train_autoattention.py AutoAttention
  • M-AutoAttention: change the name of cross.py to autoattention.py. Then python train_autoattention.py AutoAttention

About

Tensorflow implementaion for AutoAttention

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%