Skip to content

Commit

Permalink
Minor additions
Browse files Browse the repository at this point in the history
  • Loading branch information
huettern committed Jan 16, 2020
1 parent 8ec098b commit fa1d19f
Show file tree
Hide file tree
Showing 2 changed files with 73 additions and 14 deletions.
87 changes: 73 additions & 14 deletions Communication Systems/communication_systems.tex
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
% @Author: Noah Huetter
% @Date: 2019-09-24 17:26:28
% @Last Modified by: noah
% @Last Modified time: 2020-01-07 12:21:57
% @Last Modified time: 2020-01-16 16:11:35
% ---------------------------------------------------------------------------

\documentclass[a4paper, fontsize=8pt, landscape, DIV=1]{scrartcl}
Expand Down Expand Up @@ -153,7 +153,8 @@
R_{X}(t_{1},t_{2}) = \E[X(t_{1})X(t_{2})] \triangleq \\
\intinf\intinf x_{1}x_{2}f_{X_{1},X_{2}}(x_{1}, x_{2})\dx_{1}\dx_{2}\\
R_{XY}(x,y) = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}xyf_{X,Y}(x, y)dxdy\\
C_{X}(t_{1},t_{2}) = R_{X}(t_{1},t_{2}) - m_{X}^{2} =(for WSS) R_{X}(t_{2}-t_{1}) - m_{X}^{2}
C_{X}(t_{1},t_{2}) = R_{X}(t_{1},t_{2}) - m_{X}^{2} \\
=R_{X}(t_{2}-t_{1}) - m_{X}^{2} \text{(for WSS)}
\end{gathered}
\end{empheq}

Expand Down Expand Up @@ -664,10 +665,10 @@
\cgraphic{0.8}{img/qpsk.png}

Every QPSK symbol carries 2 bits, hence the symbol energy is twice the energy per information bit: $E=2E_b$.
A QPSK system achieves same BER as a BPSK at same $E_b/N_0$ but at \textit{twice the bit rate}.
A QPSK system achieves same BER ($P_e$) as a BPSK at same $E_b/N_0$ but at \textit{twice the bit rate}.

\begin{empheq}[box=\eqbox]{gather*}
\text{BER} = \frac{1}{2}\erfc\left(\sqrt{\frac{E_b}{N_0}}\right) \\
P_e = \frac{1}{2}\erfc\left(\sqrt{\frac{E_b}{N_0}}\right) \\
S_B(f) = 4E_b\sinc^2(2T_bf)
\end{empheq}

Expand Down Expand Up @@ -775,9 +776,9 @@

\textbf{Bit error rate}
The four points in the signal-space diagram correspond to two symbol, hence the
BER is the same as with QPSK.
BER ($P_e$) is the same as with QPSK.
\begin{empheq}{gather*}
\text{BER} = \frac{1}{2}\erfc\left(\frac{d_\text{min}/2}{\sqrt{N_0}}\right) = \frac{1}{2}\erfc\left(\sqrt{\frac{E_b}{N_0}}\right)
P_e = \frac{1}{2}\erfc\left(\frac{d_\text{min}/2}{\sqrt{N_0}}\right) = \frac{1}{2}\erfc\left(\sqrt{\frac{E_b}{N_0}}\right)
\end{empheq}

\cgraphic{0.7}{img/mskpsd.png}
Expand Down Expand Up @@ -1093,6 +1094,11 @@
F(f) = \frac{S_{NO}(f)}{G(f)S_{NS}(f)} = \frac{P_S S_{NO}}{P_O S_{NS}} = \frac{\SNR_{\text{Source}}(f)}{\SNR_\text{Output}(f)}
\end{empheq}

Signal to noise ratio after receiver amplifier is
\begin{empheq}{gather*}
\SNR_\text{in} - F
\end{empheq}

If two-port is noise free:
\begin{empheq}{gather*}
S_{NO}(f) = G(f)S_{NS}(f)
Expand Down Expand Up @@ -1120,7 +1126,7 @@
\end{empheq}

\textbf{Cascade of Two-Port Networks}
Use factor not dB!
Use factor not dB! Best if Lowest $F$ first in chain.
\begin{empheq}[box=\eqbox]{gather*}
F = F_1 + \frac{F_2-1}{G_1} + \frac{F_3-1}{G_1G_2} + \frac{F_4-1}{G_1G_2G_3}+\cdots\\
T_e=T_{e1}+\frac{T_{e2}}{G_1}+\frac{T_{e3}}{G_1G_2}+\frac{T_{e4}}{G_1G_2G_3}+\cdots
Expand Down Expand Up @@ -1185,6 +1191,11 @@
% Information Theory
\section{Information Theory}
% ---------------------------------------------------------------------------
Recap: $p$ Bit error prob. for BNRZ channel and amplitude $A$.
\begin{empheq}{gather*}
p = \frac{1}{2}\erfc\left(\sqrt{\frac{A^2}{N_0}}\right)
\end{empheq}


\subsection{Uncertainty, Information and Entropy}
A source emits a message $S$. $S$ is a r.v. taking values in a finite alphabet $S=\{s_0,\dots,s_{K-1}\}$.
Expand Down Expand Up @@ -1315,6 +1326,9 @@
\textbf{Binary, Symmetric Channel}
\cgraphic{0.6}{img/bsc.png}
$J=K=2$, transition probability $p$. Error probability is $p$.
\begin{empheq}[box=\eqbox]{gather*}
C_\text{BSC} = 1 + p\log_2p + (1-p)\log_2(1-p)
\end{empheq}


% ---------------------------------------------------------------------------
Expand All @@ -1335,7 +1349,8 @@
I(X;Y)=I(Y;X) \\
H(X)-H(X|Y)=H(Y)-H(Y|X) \\
I(X;Y) \geq 0 \\
H(X)\geq H(X|Y)
H(X)\geq H(X|Y) \\
I(X;Y) = 0 \Leftrightarrow X,Y\text{independent}
\end{empheq}

\textbf{Joint entropy} of $X$ and $Y$ is defined as:
Expand All @@ -1354,8 +1369,8 @@
\end{empheq}

\textbf{Channel capacity} is the maximum mutual information over all possible input distributions:
\begin{empheq}[box=\eqbox]{gather*}
C \triangleq \max_{\{p(x_j)\}} I(X;Y)
\begin{empheq}[box=\eqbox]{align*}
C &\triangleq \max_{\{p(x_j)\}} I(X;Y) & C &= B\log_2(1+\SNR)
\end{empheq}
\cgraphic{0.9}{img/capacity-binarychannel.png}

Expand Down Expand Up @@ -1496,6 +1511,7 @@
&m(X) & &\text{Message polynomial} & &\leq k-1 \\
&g(X) & &\text{Generator polynomial} & &\leq n-k \\
&c(X)=m\cdot g & &\text{Code polynomial} & &\leq n-1 \\
&s(X)=r \mod g & &\text{Syndrome}
\end{empheq}

If $g(X)$ is a factor of $X^n+1$ then the code is cyclic:
Expand Down Expand Up @@ -1835,12 +1851,12 @@
&P_0=\e^{-G} &&S=G\e^{-G}\leq\frac{1}{\e} && \text{eqty with} G=1
\end{empheq}

Unslotted ALOHA
Unslotted (Pure) ALOHA
\begin{empheq}[box=\eqbox]{align*}
&P_0=\e^{-2G} &&S=G\e^{-2G}\leq\frac{1}{2\e} && \text{eqty with} G=0.5
\end{empheq}

Prob. that $k$ frames are transmittied during time $T$ with large number of stations:
Prob. that $k$ frames are transmittied during time $T$ with large number of stations is poisson with $\lambda=gT, m_k=\sigma^2_k=gT$:
\begin{empheq}[box=\eqbox]{align*}
&P_0(k | T) = \frac{(gT)^k\e^{-gT}}{k!} &&T = \begin{cases}D, \text{slotted},\\2D, \text{unslotted}.\end{cases}\\
&P_0(k=0|T)=\e^{-gT} && P_0(k=1|T)=gT\e^{-gT}
Expand Down Expand Up @@ -1912,18 +1928,60 @@

Normalized throughput per packet duration $D$
\begin{empheq}[box=\eqbox]{gather*}
S=sD=\frac{\e^{-\alpha G}}{\frac{1}{G}+1+\alpha}
S=sD=\frac{\e^{-\alpha G}}{\frac{1}{G}+1+\alpha} \\
\lim_{\alpha\to 0} S = \frac{G}{G+1} \quad \lim_{G\to \infty} S = 0
\end{empheq}
\cgraphic{1}{img/csmathroughput2.png}

\subsection{CSMA/CD collision detect}
Detect a collision and stop Tx.

\subsection{Binary exponential backoff}
Based on CSMA/CD, three channel states: idle, contention, success.
\begin{itemize}
\item After collision, time is divided into discrete slots: length of each slot
is equal to worst-case round-trip propagaion time $2\tau$
\item After first collision, each station waits either 0 or 1 slo times before
trying again
\item After each further collision the backoff window is doubled (up to max 1024)
\item In general after $i$ collisions, a random number between 0 and $2^i-1$ is chosen,
and that number of slots is skipped
\item after 16 collisinos, the controller reports failure to higher layer
\end{itemize}


\subsection{Collision-Free Protocols}
\textbf{Bit-Map Protocol}: Contention slots and frames.
\textbf{Bit-Map Protocol}: Contention slots and frames. Each station wanting to send, transmits 1
during contention slots. Frames can then be sent in order of address. Addresses
can be rotated to prevent starvation.
\cgraphic{1}{img/bitmapproto.png}

\subsection{Limited-Contention Protocols}
Idea: Use contention at low load (to provide low delay) but use a collision-free technique
at high load (to provide good channel efficiency).

Assumptions:
\begin{itemize}
\item We allow $k$ stations to contend for channel access
\item each station has a probbility $p$ of transmitting during each slot
\end{itemize}

Probability of successful transmission is $\P(\text{success}) = kp(1-p)^{k-1}$.
Optimum value for $k=1/p$.
\begin{empheq}[box=\eqbox]{gather*}
\P(\text{Success with opt. $k$} | p) = (1-p)^{1/p-1}\\
\P(\text{Success with opt. $p$} | k) = \left(\frac{k-1}{k}\right)^{k-1}
\end{empheq}

\textbf{Adaptive Tree Walk Protocol}
\begin{itemize}
\item First, all stations are allowed to tx
\item If collision, during slot 1 only stations under node 2 may compete
\item If one acquires channel, the slot following the frame is reserved
for those statinos under node 3. If collision again, go down to 4
\end{itemize}
The heavier the load, the farther down the tree the seach should begin
\cgraphic{1}{img/tree.png}



Expand Down Expand Up @@ -1994,6 +2052,7 @@
& \sum_{k=0}^n k^2 &&=&& \frac{n(n+1)(2n+1)}{6} \\
& \sum_{k=0}^n k^3 &&=&& \frac{n^2(n+1)^2}{4} \\
& \sum_{k=0}^\infty q^k &&=&& \frac{1}{1-q} \\
& \sum_{k=1}^\infty q^k &&=&& \frac{q}{1-q} \\
\end{empheq}

\subsection{Probability}
Expand Down
Binary file added Communication Systems/img/tree.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit fa1d19f

Please sign in to comment.