Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions data/advanced_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ def __init__(
queue_size: int = 2,
max_images_per_example: int = 4,
max_images_per_knapsack: int = 18,
dataset_subsample_step: int = 1,
):
self.dataset = dataset
self.max_sample_length = max_sample_length
Expand All @@ -33,6 +34,7 @@ def __init__(
self._average_length_per_sample = (
self.dataset.mp_image_token_length + 198
) # 198 is the average tokens for the cauldron dataset
self.dataset_subsample_step = dataset_subsample_step

def __len__(self):
return int(
Expand Down Expand Up @@ -110,6 +112,8 @@ def _producer(
buffer, buffer_len = [], 0
while buffer_len < self.max_length:
try:
for _ in range(self.dataset_subsample_step - 1):
_ = next(iterator)
sample = next(iterator)
except StopIteration:
if self.infinite:
Expand Down
5 changes: 3 additions & 2 deletions models/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,16 +72,17 @@ class TrainConfig:
max_sample_length: int = 4096
compile: bool = False
resume_from_vlm_checkpoint: bool = False # Indicate if the training should be resumed from a checkpoint of the whole VLM or you want to start from scratch
train_dataset_path: str = 'HuggingFaceM4/FineVision_concat_shuffled_2'
train_dataset_path: str = 'HuggingFaceM4/FineVisionMax'
train_dataset_name: tuple[str, ...] = ("default", ) #('allava_laion', 'allava_vflan', 'cambrian(filtered)_processed', 'LLaVA_Instruct_150K', 'mmevol', 'sharegpt4o', 'sharegpt4v(coco)', 'sharegpt4v(knowledge)', 'sharegpt4v(llava)', 'sharegpt4v(sam)') # 'vision_flan(filtered)', 'lvis_instruct4v',
stream_dataset: bool = True
dataset_subsample_step: int = 3
relevance_min_rating: int = 1
image_correspondence_min_rating: int = 1
visual_dependency_min_rating: int = 1
formatting_min_rating: int = 1
wandb_entity: str = "HuggingFace" # Indicate the entity to log to in wandb
log_wandb: bool = True
use_lmms_eval: bool = True # Use lmms-eval for evaluation
lmms_eval_tasks: str = 'mmstar,mmmu_val,ocrbench,textvqa_val,docvqa_val,scienceqa,mme,infovqa_val,chartqa' # Pass additional task as one string, seperated by commas without spaces (e.g. 'mmstar,mmmu,ocrbench')
lmms_eval_tasks: str = 'mmstar,mmmu_val,ocrbench,textvqa_val,docvqa_val,scienceqa,mme,infovqa_val,chartqa,ai2d' # Pass additional task as one string, seperated by commas without spaces (e.g. 'mmstar,mmmu,ocrbench')
lmms_eval_limit: float = None
lmms_eval_batch_size: int = 64
4 changes: 2 additions & 2 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -197,10 +197,10 @@ def get_dataloaders(train_cfg, vlm_cfg):
)

train_dataset = ConstantLengthDataset(train_dataset, infinite=False, max_sample_length=train_cfg.max_sample_length, seq_length=vlm_cfg.lm_max_length, num_of_sequences=train_cfg.batch_size*4, queue_size=8,
max_images_per_example=train_cfg.max_images_per_example, max_images_per_knapsack=train_cfg.max_images_per_knapsack)
max_images_per_example=train_cfg.max_images_per_example, max_images_per_knapsack=train_cfg.max_images_per_knapsack, dataset_subsample_step=train_cfg.dataset_subsample_step)

val_dataset = ConstantLengthDataset(val_dataset, infinite=False, max_sample_length=train_cfg.max_sample_length, seq_length=vlm_cfg.lm_max_length, num_of_sequences=train_cfg.batch_size*4, queue_size=8,
max_images_per_example=train_cfg.max_images_per_example, max_images_per_knapsack=train_cfg.max_images_per_knapsack)
max_images_per_example=train_cfg.max_images_per_example, max_images_per_knapsack=train_cfg.max_images_per_knapsack, dataset_subsample_step=train_cfg.dataset_subsample_step)

# Create collators
vqa_collator = VQACollator(tokenizer, vlm_cfg.lm_max_length)
Expand Down