Skip to content

Commit

Permalink
Remove accelerate and onnxruntime from required dependencies (#590)
Browse files Browse the repository at this point in the history
* Remove accelerate dependency

* Add accelerate to import backend mapping

* Add eval method to OVModels

* add onnxruntime install for OV test

* fix test expected int8
  • Loading branch information
echarlaix authored Mar 8, 2024
1 parent be6666b commit 72b0630
Show file tree
Hide file tree
Showing 12 changed files with 96 additions and 60 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/test_openvino.yml
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ jobs:
python -m pip install --upgrade pip
# install PyTorch CPU version to avoid installing CUDA packages on GitHub runner without GPU
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install .[openvino,openvino-tokenizers,nncf,tests,diffusers]
pip install .[openvino,openvino-tokenizers,tests,diffusers] onnxruntime
- name: Test with Pytest
run: |
pytest tests/openvino/ --ignore test_modeling_basic
37 changes: 25 additions & 12 deletions optimum/intel/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@
from transformers.utils import OptionalDependencyNotAvailable, _LazyModule

from .utils import (
is_accelerate_available,
is_diffusers_available,
is_ipex_available,
is_neural_compressor_available,
Expand All @@ -29,6 +30,7 @@

_import_structure = {
"openvino": [],
"utils.dummy_openvino_and_nncf_objects": [],
}

try:
Expand Down Expand Up @@ -57,13 +59,19 @@
if not (is_openvino_available() and is_nncf_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
_import_structure["utils.dummy_openvino_and_nncf_objects"] = [
"OVQuantizer",
"OVTrainer",
"OVTrainingArguments",
]
_import_structure["utils.dummy_openvino_and_nncf_objects"].extend(["OVQuantizer", "OVTrainingArguments"])
else:
_import_structure["openvino"].extend(["OVQuantizer", "OVTrainingArguments"])


try:
if not (is_openvino_available() and is_nncf_available() and is_accelerate_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
_import_structure["utils.dummy_openvino_and_nncf_objects"].extend(["OVTrainer"])
else:
_import_structure["openvino"].extend(["OVQuantizer", "OVTrainer", "OVTrainingArguments"])
_import_structure["openvino"].extend(["OVTrainer"])


try:
if not (is_openvino_available() and is_diffusers_available()):
Expand Down Expand Up @@ -145,6 +153,7 @@
"INCSeq2SeqTrainer",
"INCTrainer",
]

try:
if not (is_neural_compressor_available() and is_diffusers_available()):
raise OptionalDependencyNotAvailable()
Expand Down Expand Up @@ -177,13 +186,17 @@
if not (is_openvino_available() and is_nncf_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_openvino_and_nncf_objects import (
OVQuantizer,
OVTrainer,
OVTrainingArguments,
)
from .utils.dummy_openvino_and_nncf_objects import OVQuantizer, OVTrainingArguments
else:
from .openvino import OVQuantizer, OVTrainingArguments

try:
if not (is_openvino_available() and is_nncf_available() and is_accelerate_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_openvino_and_nncf_objects import OVTrainer
else:
from .openvino import OVQuantizer, OVTrainer, OVTrainingArguments
from .openvino import OVTrainer

try:
if not (is_openvino_available() and is_diffusers_available()):
Expand Down
6 changes: 4 additions & 2 deletions optimum/intel/openvino/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@

import logging

from ..utils.import_utils import is_diffusers_available, is_nncf_available
from ..utils.import_utils import is_accelerate_available, is_diffusers_available, is_nncf_available
from .utils import (
OV_DECODER_NAME,
OV_DECODER_WITH_PAST_NAME,
Expand All @@ -37,9 +37,11 @@
patch_torch_operators()

from .quantization import OVQuantizer
from .trainer import OVTrainer
from .training_args import OVTrainingArguments

if is_accelerate_available():
from .trainer import OVTrainer


from .configuration import OVConfig, OVWeightQuantizationConfig
from .modeling import (
Expand Down
14 changes: 10 additions & 4 deletions optimum/intel/openvino/quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@
import logging
import os
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional, Tuple, Union
from typing import Any, Callable, Dict, Optional, Tuple, Union

import nncf
import openvino
Expand Down Expand Up @@ -56,8 +56,7 @@


if is_datasets_available():
if TYPE_CHECKING:
from datasets import Dataset
from datasets import Dataset

register_module(ignored_algorithms=[])(Conv1D)

Expand Down Expand Up @@ -147,6 +146,7 @@ def __init__(self, model: transformers.PreTrainedModel, task: Optional[str] = No
)
self.task = task or feature
self.seed = seed
# TODO : deprecate input_names
self.input_names = None
signature = inspect.signature(self.model.forward)
self._signature_columns = list(signature.parameters.keys())
Expand Down Expand Up @@ -526,9 +526,15 @@ def _get_calibration_dataloader(
data_collator: Optional[DataCollator] = None,
) -> OVDataLoader:
data_collator = data_collator if data_collator is not None else default_data_collator

if not is_datasets_available() or not isinstance(calibration_dataset, Dataset):
logger.warning(
"`remove_unused_columns` set to `False` as calibration_dataset is not an instance of `datasets.Dataset`"
)
remove_unused_columns = False

if remove_unused_columns:
calibration_dataset = self._remove_unused_columns(calibration_dataset)
self.input_names = calibration_dataset.column_names
generator = torch.Generator()
generator.manual_seed(self.seed)
sampler = RandomSampler(calibration_dataset, generator=generator)
Expand Down
1 change: 1 addition & 0 deletions optimum/intel/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@
_neural_compressor_version,
_torch_version,
compare_versions,
is_accelerate_available,
is_diffusers_available,
is_ipex_available,
is_neural_compressor_available,
Expand Down
6 changes: 3 additions & 3 deletions optimum/intel/utils/dummy_openvino_and_nncf_objects.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,14 +27,14 @@ def from_pretrained(cls, *args, **kwargs):


class OVTrainer(metaclass=DummyObject):
_backends = ["openvino", "nncf"]
_backends = ["openvino", "nncf", "accelerate"]

def __init__(self, *args, **kwargs):
requires_backends(self, ["openvino", "nncf"])
requires_backends(self, ["openvino", "nncf", "accelerate"])

@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["openvino", "nncf"])
requires_backends(cls, ["openvino", "nncf", "accelerate"])


class OVQuantizer(metaclass=DummyObject):
Expand Down
20 changes: 20 additions & 0 deletions optimum/intel/utils/import_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,6 +156,16 @@
_datasets_available = False


_accelerate_available = importlib.util.find_spec("accelerate") is not None
_accelerate_version = "N/A"

if _accelerate_available:
try:
_accelerate_version = importlib_metadata.version("accelerate")
except importlib_metadata.PackageNotFoundError:
_accelerate_available = False


def is_transformers_available():
return _transformers_available

Expand Down Expand Up @@ -196,6 +206,10 @@ def is_datasets_available():
return _datasets_available


def is_accelerate_available():
return _accelerate_available


# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
"""
Expand Down Expand Up @@ -317,13 +331,19 @@ def is_timm_version(operation: str, version: str):
`pip install datasets`. Please note that you may need to restart your runtime after installation.
"""

ACCELERATE_IMPORT_ERROR = """
{0} requires the accelerate library but it was not found in your environment. You can install it with pip:
`pip install accelerate`. Please note that you may need to restart your runtime after installation.
"""

BACKENDS_MAPPING = OrderedDict(
[
("diffusers", (is_diffusers_available, DIFFUSERS_IMPORT_ERROR)),
("ipex", (is_ipex_available, IPEX_IMPORT_ERROR)),
("nncf", (is_nncf_available, NNCF_IMPORT_ERROR)),
("openvino", (is_openvino_available, OPENVINO_IMPORT_ERROR)),
("neural_compressor", (is_neural_compressor_available, NEURAL_COMPRESSOR_IMPORT_ERROR)),
("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
]
)

Expand Down
9 changes: 5 additions & 4 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,10 +18,11 @@
"datasets>=1.4.0",
"sentencepiece",
"scipy",
"accelerate", # transformers 4.29 require accelerate for PyTorch
"onnx",
]

TESTS_REQUIRE = [
"accelerate",
"pytest",
"parameterized",
"Pillow",
Expand All @@ -39,11 +40,11 @@
QUALITY_REQUIRE = ["black~=23.1", "ruff>=0.0.241"]

EXTRAS_REQUIRE = {
"neural-compressor": ["neural-compressor>=2.2.0", "onnx", "onnxruntime<1.15.0"],
"openvino": ["openvino>=2023.3", "onnx", "onnxruntime", "nncf>=2.8.1"],
"neural-compressor": ["neural-compressor>=2.2.0", "onnxruntime<1.15.0", "accelerate"],
"openvino": ["openvino>=2023.3", "nncf>=2.8.1"],
"openvino-tokenizers": ["openvino-tokenizers[transformers]"],
"nncf": ["nncf>=2.8.1"],
"ipex": ["intel-extension-for-pytorch", "onnx"],
"ipex": ["intel-extension-for-pytorch"],
"diffusers": ["diffusers"],
"quality": QUALITY_REQUIRE,
"tests": TESTS_REQUIRE,
Expand Down
20 changes: 10 additions & 10 deletions tests/openvino/test_quantization.py
Original file line number Diff line number Diff line change
Expand Up @@ -154,24 +154,24 @@ class OVWeightCompressionTest(unittest.TestCase):
# TODO : add models
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_8BIT_COMPRESSED_MATMULS = (
(OVModelForSequenceClassification, "hf-internal-testing/tiny-random-bert", 70, 70),
(OVModelForCausalLM, "hf-internal-testing/tiny-random-gpt2", 44, 46),
(OVModelForCausalLM, "hf-internal-testing/tiny-random-gpt2", 44, 44),
)

SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_COMPRESSED_MATMULS = ((OVModelForCausalLM, "opt125m", 64, 365),)
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_AUTOCOMPRESSED_MATMULS = ((OVModelForCausalLM, "opt125m", 0, 388),)
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_COMPRESSED_MATMULS = ((OVModelForCausalLM, "opt125m", 62, 365),)
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_AUTOCOMPRESSED_MATMULS = ((OVModelForCausalLM, "opt125m", 0, 385),)
SUPPORTED_ARCHITECTURES_WITH_EXPECTED_4BIT_AUTO_COMPRESSED_MATMULS = (
(OVModelForCausalLM, "hf-internal-testing/tiny-random-OPTForCausalLM", 16, 136),
(OVModelForCausalLM, "hf-internal-testing/tiny-random-OPTForCausalLM", 14, 136),
)
SUPPORTED_ARCHITECTURES_STATEFUL_WITH_EXPECTED_8BIT_COMPRESSED_MATMULS = (
(OVModelForCausalLM, "hf-internal-testing/tiny-random-gpt2", 44, 46),
(OVModelForCausalLM, "hf-internal-testing/tiny-random-gpt2", 44, 44),
)

LOAD_IN_4_BITS_SCOPE = (
(
OVModelForCausalLM,
"hf-internal-testing/tiny-random-gpt2",
dict(bits=4, sym=False, group_size=-1, ratio=0.8),
16,
14,
),
(
OVModelForCausalLM,
Expand All @@ -182,13 +182,13 @@ class OVWeightCompressionTest(unittest.TestCase):
group_size=32,
ignored_scope={"names": ["__module.model.transformer.h.2.mlp.c_fc/aten::addmm/MatMul"]},
),
6,
4,
),
(
OVModelForCausalLM,
"hf-internal-testing/tiny-random-gpt2",
dict(bits=4, sym=False, group_size=-1, ratio=0.8, all_layers=True),
22,
18,
),
(
OVModelForCausalLM,
Expand All @@ -201,7 +201,7 @@ class OVWeightCompressionTest(unittest.TestCase):
sensitivity_metric="mean_activation_magnitude",
dataset="ptb",
),
16,
14,
),
(
OVModelForCausalLM,
Expand All @@ -215,7 +215,7 @@ class OVWeightCompressionTest(unittest.TestCase):
dataset="ptb",
awq=True,
),
16,
14,
),
)

Expand Down
Loading

0 comments on commit 72b0630

Please sign in to comment.