Skip to content

Commit

Permalink
Diffusion tasks (#827)
Browse files Browse the repository at this point in the history
* adapt to the new tasks

* Update optimum/exporters/openvino/convert.py

Co-authored-by: Ella Charlaix <80481427+echarlaix@users.noreply.github.com>

* update tasks manager

* fix

* explicit kwargs

* fix

* fix model saving

* fix library name overriding

* fix _save_model call assesrtions

* fix tasks vs model types in tests

* last fix

---------

Co-authored-by: Ella Charlaix <80481427+echarlaix@users.noreply.github.com>
  • Loading branch information
IlyasMoutawwakil and echarlaix authored Jul 18, 2024
1 parent d35ced8 commit b362180
Show file tree
Hide file tree
Showing 8 changed files with 151 additions and 65 deletions.
18 changes: 12 additions & 6 deletions optimum/commands/export/openvino.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,13 +227,19 @@ def _get_default_int4_config(model_id_or_path, library_name):

return _DEFAULT_4BIT_CONFIG

library_name = TasksManager.infer_library_from_model(self.args.model, library_name=self.args.library)
if library_name == "sentence_transformers" and self.args.library is None:
logger.warning(
"Library name is not specified. There are multiple possible variants: `sentence_transformers`, `transformers`."
"`transformers` will be selected. If you want to load your model with the `sentence-transformers` library instead, please set --library sentence_transformers"
if self.args.library is None:
# TODO: add revision, subfolder and token to args
library_name = TasksManager._infer_library_from_model_name_or_path(
model_name_or_path=self.args.model, cache_dir=self.args.cache_dir
)
library_name = "transformers"
if library_name == "sentence_transformers":
logger.warning(
"Library name is not specified. There are multiple possible variants: `sentence_transformers`, `transformers`."
"`transformers` will be selected. If you want to load your model with the `sentence-transformers` library instead, please set --library sentence_transformers"
)
library_name = "transformers"
else:
library_name = self.args.library

if self.args.weight_format is None:
ov_config = None
Expand Down
49 changes: 34 additions & 15 deletions optimum/exporters/openvino/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,11 +47,24 @@
logger = logging.getLogger(__name__)


def infer_task(task, model_name_or_path):
def infer_task(
task,
model_name_or_path,
subfolder: str = "",
revision: Optional[str] = None,
cache_dir: str = HUGGINGFACE_HUB_CACHE,
token: Optional[Union[bool, str]] = None,
):
task = TasksManager.map_from_synonym(task)
if task == "auto":
try:
task = TasksManager.infer_task_from_model(model_name_or_path)
task = TasksManager._infer_task_from_model_name_or_path(
model_name_or_path=model_name_or_path,
subfolder=subfolder,
revision=revision,
cache_dir=cache_dir,
token=token,
)
except KeyError as e:
raise KeyError(
f"The task could not be automatically inferred. Please provide the argument --task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. Detailed error: {e}"
Expand Down Expand Up @@ -193,19 +206,27 @@ def main_export(
ov_config = OVConfig(quantization_config=q_config)

original_task = task
task = infer_task(task, model_name_or_path)
framework = TasksManager.determine_framework(model_name_or_path, subfolder=subfolder, framework=framework)
library_name_is_not_provided = library_name is None
library_name = TasksManager.infer_library_from_model(
model_name_or_path, subfolder=subfolder, library_name=library_name
task = infer_task(
task, model_name_or_path, subfolder=subfolder, revision=revision, cache_dir=cache_dir, token=token
)
framework = TasksManager.determine_framework(
model_name_or_path, subfolder=subfolder, revision=revision, cache_dir=cache_dir, token=token
)

if library_name == "sentence_transformers" and library_name_is_not_provided:
logger.warning(
"Library name is not specified. There are multiple possible variants: `sentence_tenasformers`, `transformers`."
"`transformers` will be selected. If you want to load your model with the `sentence-transformers` library instead, please set --library sentence_transformers"
if library_name is None:
library_name = TasksManager._infer_library_from_model_name_or_path(
model_name_or_path=model_name_or_path,
subfolder=subfolder,
revision=revision,
cache_dir=cache_dir,
token=token,
)
library_name = "transformers"
if library_name == "sentence_transformers":
logger.warning(
"Library name is not specified. There are multiple possible variants: `sentence_tenasformers`, `transformers`."
"`transformers` will be selected. If you want to load your model with the `sentence-transformers` library instead, please set --library sentence_transformers"
)
library_name = "transformers"

do_gptq_patching = False
custom_architecture = False
Expand Down Expand Up @@ -317,9 +338,7 @@ class StoreAttr(object):
)
model.config.pad_token_id = pad_token_id

if "stable-diffusion" in task:
model_type = "stable-diffusion"
elif hasattr(model.config, "export_model_type"):
if hasattr(model.config, "export_model_type"):
model_type = model.config.export_model_type.replace("_", "-")
else:
model_type = model.config.model_type.replace("_", "-")
Expand Down
63 changes: 49 additions & 14 deletions optimum/exporters/openvino/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@
from transformers.modeling_utils import PreTrainedModel

if is_diffusers_available():
from diffusers import ModelMixin
from diffusers import DiffusionPipeline, ModelMixin

if is_tf_available():
from transformers.modeling_tf_utils import TFPreTrainedModel
Expand All @@ -74,7 +74,7 @@
from optimum.intel.openvino.configuration import OVConfig


def _save_model(model, path: str, ov_config: Optional["OVConfig"] = None):
def _save_model(model, path: str, ov_config: Optional["OVConfig"] = None, library_name: Optional[str] = None):
compress_to_fp16 = False

if ov_config is not None:
Expand All @@ -90,13 +90,12 @@ def _save_model(model, path: str, ov_config: Optional["OVConfig"] = None):

compress_to_fp16 = ov_config.dtype == "fp16"

library_name = TasksManager.infer_library_from_model(Path(path).parent)
model = _add_version_info_to_model(model, library_name)
save_model(model, path, compress_to_fp16)


def export(
model: Union["PreTrainedModel", "TFPreTrainedModel", "ModelMixin"],
model: Union["PreTrainedModel", "TFPreTrainedModel", "ModelMixin", "DiffusionPipeline"],
config: OnnxConfig,
output: Path,
opset: Optional[int] = None,
Expand Down Expand Up @@ -139,7 +138,7 @@ def export(
)

if "diffusers" in str(model.__class__) and not is_diffusers_available():
raise ImportError("The pip package `diffusers` is required to export stable diffusion models to ONNX.")
raise ImportError("The package `diffusers` is required to export diffusion models to OpenVINO.")

if stateful:
# This will be checked anyway after the model conversion, but checking it earlier will save time for a user if not suitable version is used
Expand Down Expand Up @@ -198,7 +197,19 @@ def export_tensorflow(
onnx_path = Path(output).with_suffix(".onnx")
input_names, output_names = export_tensorflow_onnx(model, config, opset, onnx_path)
ov_model = convert_model(str(onnx_path))
_save_model(ov_model, output.parent / output, ov_config=ov_config)

if model.__class__.__module__.startswith("optimum"):
# for wrapped models
library_name = TasksManager._infer_library_from_model_or_model_class(model=model.model)
else:
library_name = TasksManager._infer_library_from_model_or_model_class(model=model)

_save_model(
ov_model,
output.parent / output,
ov_config=ov_config,
library_name=library_name,
)
return input_names, output_names, True


Expand Down Expand Up @@ -251,7 +262,19 @@ def export_pytorch_via_onnx(
)
torch.onnx.export = orig_torch_onnx_export
ov_model = convert_model(str(onnx_output))
_save_model(ov_model, output.parent / OV_XML_FILE_NAME if output.suffix != ".xml" else output, ov_config=ov_config)

if model.__class__.__module__.startswith("optimum"):
# for wrapped models
library_name = TasksManager._infer_library_from_model_or_model_class(model=model.model)
else:
library_name = TasksManager._infer_library_from_model_or_model_class(model=model)

_save_model(
ov_model,
output.parent / OV_XML_FILE_NAME if output.suffix != ".xml" else output,
ov_config=ov_config,
library_name=library_name,
)
return input_names, output_names, True


Expand Down Expand Up @@ -413,7 +436,18 @@ def ts_patched_forward(*args, **kwargs):
if stateful:
patch_stateful(model.config, ov_model)

_save_model(ov_model, output, ov_config=ov_config)
if model.__module__.startswith("optimum"):
# for wrapped models like timm in optimum.intel.openvino.modeling_timm
library_name = TasksManager._infer_library_from_model_or_model_class(model=model.model)
else:
library_name = TasksManager._infer_library_from_model_or_model_class(model=model)

_save_model(
ov_model,
output,
ov_config=ov_config,
library_name=library_name,
)
clear_class_registry()
del model
gc.collect()
Expand All @@ -422,7 +456,7 @@ def ts_patched_forward(*args, **kwargs):

def export_models(
models_and_export_configs: Dict[
str, Tuple[Union["PreTrainedModel", "TFPreTrainedModel", "ModelMixin"], "OnnxConfig"]
str, Tuple[Union["PreTrainedModel", "TFPreTrainedModel", "ModelMixin", "DiffusionPipeline"], "OnnxConfig"]
],
output_dir: Path,
opset: Optional[int] = None,
Expand Down Expand Up @@ -491,7 +525,7 @@ def export_models(


def export_from_model(
model: Union["PreTrainedModel", "TFPreTrainedModel"],
model: Union["PreTrainedModel", "TFPreTrainedModel", "ModelMixin", "DiffusionPipeline"],
output: Union[str, Path],
task: Optional[str] = None,
ov_config: Optional["OVConfig"] = None,
Expand All @@ -505,14 +539,15 @@ def export_from_model(
trust_remote_code: bool = False,
**kwargs_shapes,
):
model_kwargs = model_kwargs or {}

if ov_config is not None and ov_config.quantization_config and not is_nncf_available():
raise ImportError(
f"Compression of the weights to {ov_config.quantization_config} requires nncf, please install it with `pip install nncf`"
)

model_kwargs = model_kwargs or {}
library_name = TasksManager._infer_library_from_model(model)
TasksManager.standardize_model_attributes(model, library_name)
library_name = TasksManager._infer_library_from_model_or_model_class(model=model)
TasksManager.standardize_model_attributes(model)

if hasattr(model.config, "export_model_type"):
model_type = model.config.export_model_type.replace("_", "-")
Expand All @@ -521,7 +556,7 @@ def export_from_model(

custom_architecture = library_name == "transformers" and model_type not in TasksManager._SUPPORTED_MODEL_TYPE

if task is not None:
if task is not None and task != "auto":
task = TasksManager.map_from_synonym(task)
else:
try:
Expand Down
33 changes: 17 additions & 16 deletions optimum/intel/openvino/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,12 @@
import os
from glob import glob
from pathlib import Path
from typing import Tuple, Union
from typing import Tuple, Type, Union

import numpy as np
from huggingface_hub import model_info
from openvino.runtime import Core, Type, properties
from openvino.runtime import Core, properties
from openvino.runtime import Type as OVType
from transformers import AutoTokenizer, CLIPTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
from transformers.onnx.utils import ParameterFormat, compute_serialized_parameters_size

Expand Down Expand Up @@ -70,19 +71,19 @@


STR_TO_OV_TYPE = {
"boolean": Type.boolean,
"f16": Type.f16,
"f32": Type.f32,
"f64": Type.f64,
"i8": Type.i8,
"i16": Type.i16,
"i32": Type.i32,
"i64": Type.i64,
"u8": Type.u8,
"u16": Type.u16,
"u32": Type.u32,
"u64": Type.u64,
"bf16": Type.bf16,
"boolean": OVType.boolean,
"f16": OVType.f16,
"f32": OVType.f32,
"f64": OVType.f64,
"i8": OVType.i8,
"i16": OVType.i16,
"i32": OVType.i32,
"i64": OVType.i64,
"u8": OVType.u8,
"u16": OVType.u16,
"u32": OVType.u32,
"u64": OVType.u64,
"bf16": OVType.bf16,
}


Expand Down Expand Up @@ -110,7 +111,7 @@
}


NEED_CONVERT_TO_FAST_TOKENIZER: Tuple[type(PreTrainedTokenizer)] = (CLIPTokenizer,)
NEED_CONVERT_TO_FAST_TOKENIZER: Tuple[Type[PreTrainedTokenizer]] = (CLIPTokenizer,)


def maybe_convert_tokenizer_to_fast(
Expand Down
2 changes: 1 addition & 1 deletion setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@
INSTALL_REQUIRE = [
"torch>=1.11",
"transformers>=4.36.0,<4.43.0",
"optimum>=1.21.2,<1.22.0",
"optimum@git+https://github.com/huggingface/optimum.git",
"datasets>=1.4.0",
"sentencepiece",
"setuptools",
Expand Down
File renamed without changes.
Loading

0 comments on commit b362180

Please sign in to comment.