Skip to content

Commit

Permalink
add tutorials
Browse files Browse the repository at this point in the history
  • Loading branch information
echarlaix committed Jul 3, 2024
1 parent f961c6f commit ce3c831
Show file tree
Hide file tree
Showing 3 changed files with 283 additions and 0 deletions.
7 changes: 7 additions & 0 deletions docs/source/_toctree.yml
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,13 @@
title: Optimization
- local: openvino/models
title: Supported Models
- sections:
- local: openvino/tutorials/notebooks
title: Notebooks
- local: openvino/tutorials/diffusers
title: Generate images with Stable Diffusion models
title: Tutorials
isExpanded: false
- local: openvino/reference
title: Reference
title: OpenVINO
Expand Down
250 changes: 250 additions & 0 deletions docs/source/openvino/tutorials/diffusers.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,250 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Tutorial

## Stable Diffusion

Stable Diffusion models can also be used when running inference with OpenVINO. When Stable Diffusion models
are exported to the OpenVINO format, they are decomposed into different components that are later combined during inference:
- The text encoder
- The U-NET
- The VAE encoder
- The VAE decoder

| Task | Auto Class |
|--------------------------------------|--------------------------------------|
| `text-to-image` | `OVStableDiffusionPipeline` |
| `image-to-image` | `OVStableDiffusionImg2ImgPipeline` |
| `inpaint` | `OVStableDiffusionInpaintPipeline` |


### Text-to-Image
Here is an example of how you can load an OpenVINO Stable Diffusion model and run inference using OpenVINO Runtime:

```python
from optimum.intel import OVStableDiffusionPipeline

model_id = "echarlaix/stable-diffusion-v1-5-openvino"
pipeline = OVStableDiffusionPipeline.from_pretrained(model_id)
prompt = "sailing ship in storm by Rembrandt"
images = pipeline(prompt).images
```

To load your PyTorch model and convert it to OpenVINO on the fly, you can set `export=True`.

```python
model_id = "runwayml/stable-diffusion-v1-5"
pipeline = OVStableDiffusionPipeline.from_pretrained(model_id, export=True)
# Don't forget to save the exported model
pipeline.save_pretrained("openvino-sd-v1-5")
```

To further speed up inference, the model can be statically reshaped :

```python
# Define the shapes related to the inputs and desired outputs
batch_size = 1
num_images_per_prompt = 1
height = 512
width = 512

# Statically reshape the model
pipeline.reshape(batch_size=batch_size, height=height, width=width, num_images_per_prompt=num_images_per_prompt)
# Compile the model before the first inference
pipeline.compile()

# Run inference
images = pipeline(prompt, height=height, width=width, num_images_per_prompt=num_images_per_prompt).images
```

In case you want to change any parameters such as the outputs height or width, you'll need to statically reshape your model once again.

<div class="flex justify-center">
<img src="https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/stable_diffusion_v1_5_sail_boat_rembrandt.png">
</div>

### Text-to-Image with Textual Inversion
Here is an example of how you can load an OpenVINO Stable Diffusion model with pre-trained textual inversion embeddings and run inference using OpenVINO Runtime:


First, you can run original pipeline without textual inversion
```python
from optimum.intel import OVStableDiffusionPipeline
import numpy as np

model_id = "echarlaix/stable-diffusion-v1-5-openvino"
prompt = "A <cat-toy> back-pack"
# Set a random seed for better comparison
np.random.seed(42)

pipeline = OVStableDiffusionPipeline.from_pretrained(model_id, export=False, compile=False)
pipeline.compile()
image1 = pipeline(prompt, num_inference_steps=50).images[0]
image1.save("stable_diffusion_v1_5_without_textual_inversion.png")
```

Then, you can load [sd-concepts-library/cat-toy](https://huggingface.co/sd-concepts-library/cat-toy) textual inversion embedding and run pipeline with same prompt again
```python
# Reset stable diffusion pipeline
pipeline.clear_requests()

# Load textual inversion into stable diffusion pipeline
pipeline.load_textual_inversion("sd-concepts-library/cat-toy", "<cat-toy>")

# Compile the model before the first inference
pipeline.compile()
image2 = pipeline(prompt, num_inference_steps=50).images[0]
image2.save("stable_diffusion_v1_5_with_textual_inversion.png")
```
The left image shows the generation result of original stable diffusion v1.5, the right image shows the generation result of stable diffusion v1.5 with textual inversion.

| | |
|---|---|
| ![](https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/textual_inversion/stable_diffusion_v1_5_without_textual_inversion.png) | ![](https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/textual_inversion/stable_diffusion_v1_5_with_textual_inversion.png) |


### Image-to-Image

```python
import requests
import torch
from PIL import Image
from io import BytesIO
from optimum.intel import OVStableDiffusionImg2ImgPipeline

model_id = "runwayml/stable-diffusion-v1-5"
pipeline = OVStableDiffusionImg2ImgPipeline.from_pretrained(model_id, export=True)

url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
response = requests.get(url)
init_image = Image.open(BytesIO(response.content)).convert("RGB")
init_image = init_image.resize((768, 512))
prompt = "A fantasy landscape, trending on artstation"
image = pipeline(prompt=prompt, image=init_image, strength=0.75, guidance_scale=7.5).images[0]
image.save("fantasy_landscape.png")
```

## Stable Diffusion XL

| Task | Auto Class |
|--------------------------------------|--------------------------------------|
| `text-to-image` | `OVStableDiffusionXLPipeline` |
| `image-to-image` | `OVStableDiffusionXLImg2ImgPipeline` |


### Text-to-Image

Here is an example of how you can load a SDXL OpenVINO model from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) and run inference using OpenVINO Runtime:

```python
from optimum.intel import OVStableDiffusionXLPipeline

model_id = "stabilityai/stable-diffusion-xl-base-1.0"
base = OVStableDiffusionXLPipeline.from_pretrained(model_id)
prompt = "train station by Caspar David Friedrich"
image = base(prompt).images[0]
image.save("train_station.png")
```

| | |
|---|---|
| ![](https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/sd_xl/train_station_friedrich.png) | ![](https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/sd_xl/train_station_friedrich_2.png) |

### Text-to-Image with Textual Inversion

Here is an example of how you can load an SDXL OpenVINO model from [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) with pre-trained textual inversion embeddings and run inference using OpenVINO Runtime:


First, you can run original pipeline without textual inversion
```python
from optimum.intel import OVStableDiffusionXLPipeline
import numpy as np

model_id = "stabilityai/stable-diffusion-xl-base-1.0"
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround wearing a red jacket and black shirt, best quality, intricate details."
# Set a random seed for better comparison
np.random.seed(112)

base = OVStableDiffusionXLPipeline.from_pretrained(model_id, export=False, compile=False)
base.compile()
image1 = base(prompt, num_inference_steps=50).images[0]
image1.save("sdxl_without_textual_inversion.png")
```

Then, you can load [charturnerv2](https://civitai.com/models/3036/charturner-character-turnaround-helper-for-15-and-21) textual inversion embedding and run pipeline with same prompt again
```python
# Reset stable diffusion pipeline
base.clear_requests()

# Load textual inversion into stable diffusion pipeline
base.load_textual_inversion("./charturnerv2.pt", "charturnerv2")

# Compile the model before the first inference
base.compile()
image2 = base(prompt, num_inference_steps=50).images[0]
image2.save("sdxl_with_textual_inversion.png")
```

### Image-to-Image

Here is an example of how you can load a PyTorch SDXL model, convert it to OpenVINO on-the-fly and run inference using OpenVINO Runtime for *image-to-image*:

```python
from optimum.intel import OVStableDiffusionXLImg2ImgPipeline
from diffusers.utils import load_image

model_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
pipeline = OVStableDiffusionXLImg2ImgPipeline.from_pretrained(model_id, export=True)

url = "https://huggingface.co/datasets/optimum/documentation-images/resolve/main/intel/openvino/sd_xl/castle_friedrich.png"
image = load_image(url).convert("RGB")
prompt = "medieval castle by Caspar David Friedrich"
image = pipeline(prompt, image=image).images[0]
# Don't forget to save your OpenVINO model so that you can load it without exporting it with `export=True`
pipeline.save_pretrained("openvino-sd-xl-refiner-1.0")
```


### Refining the image output

The image can be refined by making use of a model like [stabilityai/stable-diffusion-xl-refiner-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0). In this case, you only have to output the latents from the base model.


```python
from optimum.intel import OVStableDiffusionXLImg2ImgPipeline

model_id = "stabilityai/stable-diffusion-xl-refiner-1.0"
refiner = OVStableDiffusionXLImg2ImgPipeline.from_pretrained(model_id, export=True)

image = base(prompt=prompt, output_type="latent").images[0]
image = refiner(prompt=prompt, image=image[None, :]).images[0]
```


## Latent Consistency Models


| Task | Auto Class |
|--------------------------------------|--------------------------------------|
| `text-to-image` | `OVLatentConsistencyModelPipeline` |


### Text-to-Image

Here is an example of how you can load a Latent Consistency Models (LCMs) from [SimianLuo/LCM_Dreamshaper_v7](https://huggingface.co/SimianLuo/LCM_Dreamshaper_v7) and run inference using OpenVINO :

```python
from optimum.intel import OVLatentConsistencyModelPipeline

model_id = "SimianLuo/LCM_Dreamshaper_v7"
pipeline = OVLatentConsistencyModelPipeline.from_pretrained(model_id, export=True)
prompt = "sailing ship in storm by Leonardo da Vinci"
images = pipeline(prompt, num_inference_steps=4, guidance_scale=8.0).images
```
26 changes: 26 additions & 0 deletions docs/source/openvino/tutorials/notebooks.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->

# Notebooks

## Inference

| Notebook | Description | Studio Lab | |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|------:|
| [How to run inference with the OpenVINO](https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/optimum_openvino_inference.ipynb) | Explains how to export your model to OpenVINO and to run inference with OpenVINO Runtime on various tasks | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/optimum-intel/blob/main/notebooks/openvino/optimum_openvino_inference.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/optimum-intel/blob/main/notebooks/openvino/optimum_openvino_inference.ipynb) |

## Quantization

| Notebook | Description | Studio Lab | |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|------:|
| [How to quantize a question answering model with OpenVINO NNCF](https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/question_answering_quantization.ipynb) | Show how to apply post-training quantization on a question answering model using [NNCF](https://github.com/openvinotoolkit/nncf) and to accelerate inference with OpenVINO | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/optimum-intel/blob/main/notebooks/openvino/question_answering_quantization.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/optimum-intel/blob/main/notebooks/openvino/question_answering_quantization.ipynb) |
| [How to quantize Stable Diffusion model with OpenVINO NNCF](https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_hybrid_quantization.ipynb) | Show how to apply post-training hybrid quantization on a Stable Diffusion model using [NNCF](https://github.com/openvinotoolkit/nncf) and to accelerate inference with OpenVINO | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_hybrid_quantization.ipynb)| [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_hybrid_quantization.ipynb)|
| [Compare outputs of a quantized Stable Diffusion model with its full-precision counterpart](https://github.com/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_optimization.ipynb) | Show how to load and compare outputs from two Stable Diffusion models with different precision | [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_optimization.ipynb) | [![Open in AWS Studio](https://studiolab.sagemaker.aws/studiolab.svg)](https://studiolab.sagemaker.aws/import/github/huggingface/optimum-intel/blob/main/notebooks/openvino/stable_diffusion_optimization.ipynb) |


0 comments on commit ce3c831

Please sign in to comment.