Skip to content

restore input format for stable diffusion and export configs mapping #1091

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 23 additions & 1 deletion optimum/exporters/openvino/model_configs.py
Original file line number Diff line number Diff line change
Expand Up @@ -1250,6 +1250,7 @@ def patch_model_for_export(

@register_in_tasks_manager("clip-text-model", *["feature-extraction"], library_name="transformers")
@register_in_tasks_manager("clip-text-model", *["feature-extraction"], library_name="diffusers")
@register_in_tasks_manager("clip-text", *["feature-extraction"], library_name="diffusers")
class CLIPTextOpenVINOConfig(CLIPTextOnnxConfig):
def patch_model_for_export(
self, model: Union["PreTrainedModel", "TFPreTrainedModel"], model_kwargs: Optional[Dict[str, Any]] = None
Expand Down Expand Up @@ -1795,12 +1796,31 @@ def generate(self, input_name: str, framework: str = "pt", int_dtype: str = "int
)


class DummyUnetTimestepInputGenerator(DummyTimestepInputGenerator):
def generate(self, input_name: str, framework: str = "pt", int_dtype: str = "int64", float_dtype: str = "fp32"):
if input_name != "timestep":
return super().generate(input_name, framework, int_dtype, float_dtype)
shape = [self.batch_size]
return self.random_int_tensor(shape, max_value=self.vocab_size, framework=framework, dtype=int_dtype)


@register_in_tasks_manager("unet", *["semantic-segmentation"], library_name="diffusers")
@register_in_tasks_manager("unet-2d-condition", *["semantic-segmentation"], library_name="diffusers")
class UnetOpenVINOConfig(UNetOnnxConfig):
DUMMY_INPUT_GENERATOR_CLASSES = (DummyUnetVisionInputGenerator,) + UNetOnnxConfig.DUMMY_INPUT_GENERATOR_CLASSES[1:]
DUMMY_INPUT_GENERATOR_CLASSES = (
DummyUnetVisionInputGenerator,
DummyUnetTimestepInputGenerator,
) + UNetOnnxConfig.DUMMY_INPUT_GENERATOR_CLASSES[2:]

@property
def inputs(self) -> Dict[str, Dict[int, str]]:
common_inputs = super().inputs
common_inputs["timestep"] = {0: "batch_size"}
return common_inputs


@register_in_tasks_manager("sd3-transformer", *["semantic-segmentation"], library_name="diffusers")
@register_in_tasks_manager("sd3-transformer-2d", *["semantic-segmentation"], library_name="diffusers")
class SD3TransformerOpenVINOConfig(UNetOnnxConfig):
DUMMY_INPUT_GENERATOR_CLASSES = (
(DummyTransformerTimestpsInputGenerator,)
Expand Down Expand Up @@ -1830,6 +1850,7 @@ def rename_ambiguous_inputs(self, inputs):


@register_in_tasks_manager("t5-encoder-model", *["feature-extraction"], library_name="diffusers")
@register_in_tasks_manager("t5-encoder", *["feature-extraction"], library_name="diffusers")
class T5EncoderOpenVINOConfig(CLIPTextOpenVINOConfig):
pass

Expand Down Expand Up @@ -1905,6 +1926,7 @@ def generate(self, input_name: str, framework: str = "pt", int_dtype: str = "int


@register_in_tasks_manager("flux-transformer", *["semantic-segmentation"], library_name="diffusers")
@register_in_tasks_manager("flux-transformer-2d", *["semantic-segmentation"], library_name="diffusers")
class FluxTransformerOpenVINOConfig(SD3TransformerOpenVINOConfig):
DUMMY_INPUT_GENERATOR_CLASSES = (
DummyTransformerTimestpsInputGenerator,
Expand Down