Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix compile_only mode for diffusers with transformer as main model #1101

Merged
merged 2 commits into from
Jan 8, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 8 additions & 2 deletions optimum/intel/openvino/modeling_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -162,10 +162,11 @@ def __init__(
"Please provide `compile=True` if you want to use `compile_only=True` or set `compile_only=False`"
)

if not isinstance(unet, openvino.runtime.CompiledModel):
main_model = unet if unet is not None else transformer
if not isinstance(main_model, openvino.runtime.CompiledModel):
raise ValueError("`compile_only` expect that already compiled model will be provided")

model_is_dynamic = model_has_dynamic_inputs(unet)
model_is_dynamic = model_has_dynamic_inputs(main_model)
if dynamic_shapes ^ model_is_dynamic:
requested_shapes = "dynamic" if dynamic_shapes else "static"
compiled_shapes = "dynamic" if model_is_dynamic else "static"
Expand Down Expand Up @@ -291,6 +292,11 @@ def _save_pretrained(self, save_directory: Union[str, Path]):
if config_path.is_file():
config_save_path = save_path / CONFIG_NAME
shutil.copyfile(config_path, config_save_path)
else:
if hasattr(model, "save_config"):
model.save_config(save_path)
elif hasattr(model, "config") and hasattr(model.config, "save_pretrained"):
model.config.save_pretrained(save_path)

self.scheduler.save_pretrained(save_directory / "scheduler")

Expand Down
75 changes: 73 additions & 2 deletions tests/openvino/test_modeling.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,8 @@

from optimum.exporters.openvino.model_patcher import patch_update_causal_mask
from optimum.intel import (
OVDiffusionPipeline,
OVFluxPipeline,
OVModelForAudioClassification,
OVModelForAudioFrameClassification,
OVModelForAudioXVector,
Expand Down Expand Up @@ -107,7 +109,9 @@
from optimum.intel.utils.import_utils import is_openvino_version, is_transformers_version
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.utils import (
DIFFUSION_MODEL_TEXT_ENCODER_2_SUBFOLDER,
DIFFUSION_MODEL_TEXT_ENCODER_SUBFOLDER,
DIFFUSION_MODEL_TRANSFORMER_SUBFOLDER,
DIFFUSION_MODEL_UNET_SUBFOLDER,
DIFFUSION_MODEL_VAE_DECODER_SUBFOLDER,
DIFFUSION_MODEL_VAE_ENCODER_SUBFOLDER,
Expand Down Expand Up @@ -140,7 +144,8 @@ def __init__(self, *args, **kwargs):
self.OV_MODEL_ID = "echarlaix/distilbert-base-uncased-finetuned-sst-2-english-openvino"
self.OV_DECODER_MODEL_ID = "helenai/gpt2-ov"
self.OV_SEQ2SEQ_MODEL_ID = "echarlaix/t5-small-openvino"
self.OV_DIFFUSION_MODEL_ID = "hf-internal-testing/tiny-stable-diffusion-openvino"
self.OV_SD_DIFFUSION_MODEL_ID = "hf-internal-testing/tiny-stable-diffusion-openvino"
self.OV_FLUX_DIFFUSION_MODEL_ID = "katuni4ka/tiny-random-flux-ov"
self.OV_VLM_MODEL_ID = "katuni4ka/tiny-random-llava-ov"

def test_load_from_hub_and_save_model(self):
Expand Down Expand Up @@ -337,7 +342,7 @@ def test_load_from_hub_and_save_seq2seq_model(self):

@require_diffusers
def test_load_from_hub_and_save_stable_diffusion_model(self):
loaded_pipeline = OVStableDiffusionPipeline.from_pretrained(self.OV_DIFFUSION_MODEL_ID, compile=False)
loaded_pipeline = OVStableDiffusionPipeline.from_pretrained(self.OV_SD_DIFFUSION_MODEL_ID, compile=False)
self.assertIsInstance(loaded_pipeline.config, Dict)
# Test that PERFORMANCE_HINT is set to LATENCY by default
self.assertEqual(loaded_pipeline.ov_config.get("PERFORMANCE_HINT"), "LATENCY")
Expand Down Expand Up @@ -391,6 +396,72 @@ def test_load_from_hub_and_save_stable_diffusion_model(self):
del pipeline
gc.collect()

@require_diffusers
@unittest.skipIf(
is_transformers_version("<", "4.45"),
"model tokenizer exported with tokenizers 0.20 is not compatible with old transformers",
)
def test_load_from_hub_and_save_flux_model(self):
loaded_pipeline = OVDiffusionPipeline.from_pretrained(self.OV_FLUX_DIFFUSION_MODEL_ID, compile=False)
self.assertIsInstance(loaded_pipeline, OVFluxPipeline)
self.assertIsInstance(loaded_pipeline.config, Dict)
# Test that PERFORMANCE_HINT is set to LATENCY by default
self.assertEqual(loaded_pipeline.ov_config.get("PERFORMANCE_HINT"), "LATENCY")
loaded_pipeline.compile()
self.assertIsNone(loaded_pipeline.unet)
self.assertEqual(loaded_pipeline.transformer.request.get_property("PERFORMANCE_HINT"), "LATENCY")
batch_size, height, width = 2, 16, 16
inputs = {
"prompt": ["sailing ship in storm by Leonardo da Vinci"] * batch_size,
"height": height,
"width": width,
"num_inference_steps": 2,
"output_type": "np",
}

np.random.seed(0)
torch.manual_seed(0)
pipeline_outputs = loaded_pipeline(**inputs).images
self.assertEqual(pipeline_outputs.shape, (batch_size, height, width, 3))

with TemporaryDirectory() as tmpdirname:
loaded_pipeline.save_pretrained(tmpdirname)
pipeline = OVDiffusionPipeline.from_pretrained(tmpdirname)
self.assertIsInstance(loaded_pipeline, OVFluxPipeline)
folder_contents = os.listdir(tmpdirname)
self.assertIn(loaded_pipeline.config_name, folder_contents)
for subfoler in {
DIFFUSION_MODEL_TRANSFORMER_SUBFOLDER,
DIFFUSION_MODEL_TEXT_ENCODER_SUBFOLDER,
DIFFUSION_MODEL_TEXT_ENCODER_2_SUBFOLDER,
DIFFUSION_MODEL_VAE_ENCODER_SUBFOLDER,
DIFFUSION_MODEL_VAE_DECODER_SUBFOLDER,
}:
folder_contents = os.listdir(os.path.join(tmpdirname, subfoler))
self.assertIn(OV_XML_FILE_NAME, folder_contents)
self.assertIn(OV_XML_FILE_NAME.replace(".xml", ".bin"), folder_contents)

compile_only_pipeline = OVDiffusionPipeline.from_pretrained(tmpdirname, compile_only=True)
self.assertIsInstance(compile_only_pipeline, OVFluxPipeline)
self.assertIsInstance(compile_only_pipeline.transformer.model, ov.runtime.CompiledModel)
self.assertIsInstance(compile_only_pipeline.text_encoder.model, ov.runtime.CompiledModel)
self.assertIsInstance(compile_only_pipeline.text_encoder_2.model, ov.runtime.CompiledModel)
self.assertIsInstance(compile_only_pipeline.vae_encoder.model, ov.runtime.CompiledModel)
self.assertIsInstance(compile_only_pipeline.vae_decoder.model, ov.runtime.CompiledModel)

np.random.seed(0)
torch.manual_seed(0)
outputs = compile_only_pipeline(**inputs).images
np.testing.assert_allclose(pipeline_outputs, outputs, atol=1e-4, rtol=1e-4)
del compile_only_pipeline

np.random.seed(0)
torch.manual_seed(0)
outputs = pipeline(**inputs).images
np.testing.assert_allclose(pipeline_outputs, outputs, atol=1e-4, rtol=1e-4)
del pipeline
gc.collect()

@pytest.mark.run_slow
@slow
def test_load_model_from_hub_private_with_token(self):
Expand Down