Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

set cpu affinity and membind for better oob performance #853

Merged
merged 19 commits into from
Aug 27, 2024
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions docker/Dockerfile.intel
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,8 @@ RUN --mount=type=cache,id=apt-dev,target=/var/cache/apt \
libpng-dev \
python3 \
python3-pip \
python3-dev \
libnuma-dev \
&& rm -rf /var/lib/apt/lists/*"
RUN /usr/sbin/update-ccache-symlinks
RUN mkdir /opt/ccache && ccache --set-config=cache_dir=/opt/ccache
Expand All @@ -43,12 +45,11 @@ RUN python3 -m pip install --no-cache-dir \
torchaudio==${TORCHAUDIO_VERSION} \
-f https://download.pytorch.org/whl/torch_stable.html && \
python3 -m pip install intel-extension-for-pytorch==$IPEX_VERSION && \
python3 -m pip install oneccl_bind_pt --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/cpu/us/
python3 -m pip install oneccl_bind_pt --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/cpu/us/ && \
python3 -m pip install --no-cache-dir numa

ARG OMP_NUM_THREADS=1
ENV OMP_NUM_THREADS=${OMP_NUM_THREADS}
ARG KMP_BLOCKTIME=1
ENV KMP_BLOCKTIME=${KMP_BLOCKTIME}
ARG KMP_HW_SUBSET=1T
ENV KMP_HW_SUBSET=${KMP_HW_SUBSET}
ENV LD_PRELOAD="/usr/local/lib/libiomp5.so /usr/lib/x86_64-linux-gnu/libtcmalloc.so"
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc.so"
1 change: 1 addition & 0 deletions optimum/intel/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
is_neural_compressor_available,
is_neural_compressor_version,
is_nncf_available,
is_numa_available,
is_openvino_available,
is_torch_version,
is_transformers_available,
Expand Down
12 changes: 12 additions & 0 deletions optimum/intel/utils/import_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -150,6 +150,14 @@
except importlib_metadata.PackageNotFoundError:
_accelerate_available = False

_numa_available = importlib.util.find_spec("numa") is not None

if _numa_available:
try:
_numa_version = importlib_metadata.version("numa")
IlyasMoutawwakil marked this conversation as resolved.
Show resolved Hide resolved
except importlib_metadata.PackageNotFoundError:
_numa_available = False


def is_transformers_available():
return _transformers_available
Expand Down Expand Up @@ -272,6 +280,10 @@ def is_accelerate_available():
return _accelerate_available


def is_numa_available():
return _numa_available


# This function was copied from: https://github.com/huggingface/accelerate/blob/874c4967d94badd24f893064cc3bef45f57cadf7/src/accelerate/utils/versions.py#L319
def compare_versions(library_or_version: Union[str, Version], operation: str, requirement_version: str):
"""
Expand Down
80 changes: 80 additions & 0 deletions optimum/intel/utils/modeling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,16 +12,25 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import math
import os
import platform
import re
from pathlib import Path
from typing import List, Optional, Union

import psutil
import torch
from huggingface_hub import HfApi, HfFolder

from .import_utils import is_numa_available


MULTI_QUERY_ATTN_MODELS = {"falcon", "gpt_bigcode"}

logger = logging.getLogger(__name__)


def get_model_device(model: torch.nn.Module) -> torch.device:
"""
Expand Down Expand Up @@ -110,3 +119,74 @@ def _find_files_matching_pattern(
files = [Path(p) for p in repo_files if re.match(pattern, str(p)) and str(p.parent) == subfolder]

return files


def get_int_from_env(env_keys, default):
"""Returns the first positive env value found in the `env_keys` list or the default."""
for e in env_keys:
val = int(os.environ.get(e, -1))
if val >= 0:
return val
return default


def bind_cores_for_best_perf():
"""
Set number of threads per rank, numa cpu affinity and numa memory binding if not already set for better OOB performance.
Works for wold_size >= 1 and rank >= 1

Example:
.. code-block:: python

from optimum.intel.ipex import IPEXModelForCausalLM
from optimum.intel.utils.modeling_utils import bind_cores_for_best_perf

bind_cores_for_best_perf()
model = IPEXModelForCausalLM.from_pretrained("gpt2", torch_dtype=torch.bfloat16, export=True)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
input_sentence = ["tell me a story about a trip to the moon"]
model_inputs = tokenizer(input_sentence, return_tensors="pt")
generation_kwargs = dict(max_new_tokens=500)
generated_ids = model.generate(**model_inputs, **generation_kwargs)

Returns:
None

"""
if platform.system() != "Linux":
logger.error("bind_cores_for_best_perf: OS not supported, this function can only be run on Linux systems.")
raise OSError("bind_cores_for_best_perf: OS not supported, this function can only be run on Linux systems.")
if not is_numa_available():
logger.error("'numa' module not found")
raise ImportError("'numa' module not found, install with 'pip install numa'")
import numa

local_size = get_int_from_env(["LOCAL_WORLD_SIZE", "MPI_LOCALNRANKS", "OMPI_COMM_WORLD_LOCAL_SIZE", "MV2_COMM_WORLD_LOCAL_SIZE"], 1)
rank_id = get_int_from_env(
["LOCAL_RANK", "MPI_LOCALRANKID", "OMPI_COMM_WORLD_LOCAL_RANK", "MV2_COMM_WORLD_LOCAL_RANK"], 0
)
nodes = numa.get_max_node() + 1
rank_per_node = math.ceil(local_size / nodes)
num_cpus_per_nodes = int(psutil.cpu_count(logical=False) / nodes)
node_id = int(rank_id / rank_per_node)
rank_offset_per_node = rank_id % rank_per_node
if os.getenv("OMP_NUM_THREADS") is None:
num_cpus_per_rank = max(int(num_cpus_per_nodes / rank_per_node), 1)
logger.info(f"Setting OMP_NUM_THREADS to {num_cpus_per_rank} for better performance")
else:
num_cpus_per_rank = int(os.getenv("OMP_NUM_THREADS"))
logger.info(f"OMP_NUM_THREADS already set to {num_cpus_per_rank}")
if len(numa.get_membind()) == nodes:
# if numa memory binding is not set, set it to the node where the rank is running
numa.set_membind([node_id])

torch.set_num_threads(num_cpus_per_rank)

if len(numa.get_affinity(0)) == psutil.cpu_count(logical=True):
# if numa affinity is unset (default value is set to all logical cores) set it to the physical cores assigned to the rank
cpu_start = num_cpus_per_rank * rank_offset_per_node
numa.set_affinity(
0,
list(numa.node_to_cpus(node_id))[cpu_start : cpu_start + num_cpus_per_rank],
)
logger.info(f"affinity={numa.get_affinity(0)}, membind = {numa.get_membind()}")