Skip to content

hujingbin1/Cat_Dog_Classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Cat_Dog_Classification

项目简介

基于MindSpore框架实现了一个简单的二分类猫狗分类器,使用ResNet50网络进行训练,ONNX进行模型部署,并通过PyQt5进行简单的UI界面展示

环境配置

本项目基于Linux环境进行训练得到权重文件并导出ONNX,在Win11进行模型部署和测试。将环境配置文件编写为Shell脚本,即:env.sh文件,通过如下命令进行环境部署

bash env.sh

ONNX文件(放于项目根目录下):

​ 链接:https://pan.baidu.com/s/17xlq1hValsjosvCEy0CgJw?pwd=2qpo ​ 提取码:2qpo

CheckPoint模型权重文件(放于项目根目录下):

​ 链接:https://pan.baidu.com/s/1Q2Fhbb3dcSG9CQT0DVWsNw?pwd=0qnr

​ 提取码:0qnr

数据集(放于DataSet/PetImages目录下):

​ Kaggle猫狗数据集

目录介绍

```
|-- cnn101.py
​    |-- cnn152.py
​    |-- cnn50.py
​    |-- env.sh
​    |-- export.py
​    |-- file_list.txt
​    |-- infer.py
​    |-- onnx_infer.py
​    |-- process_data.py
​    |-- README.md
​    |-- resnet.py
​    |-- resnet101.py
​    |-- resnet152.py
​    |-- train.py
​    |-- train_256.py
​    |-- train_adam.py
​    |-- train_attention.py
​    |-- train_cnn.sh
​    |-- train_continue.py
​    |-- train_test.py
​    |-- train_transfer.py
​    |-- val.py
​    |-- dataset
​    |   |-- PetImages
​    |       |-- clean.py
​    |       |-- partition.py
​    |       |-- Cat
​    |       |-- Dog
​    |-- log
​    |   |-- file_list.txt
​    |   |-- file_path.py
​    |   |-- cnn101_lr0.1_bs64
​    |   |   |-- train.log
​    |   |-- cnn152_lr0.1_bs64
​    |   |   |-- train.log
​    |   |-- cnn50_lr0.1_bs64
​    |   |   |-- train.log
​    |   |-- resnet101_lr0.1_bs64
​    |   |   |-- train.log
​    |   |-- resnet152_lr0.1_bs64
​    |   |   |-- train.log
​    |   |-- resnet50_attention_lr0.1_bs256
​    |   |   |-- train.log
​    |   |-- resnet50_lr0.001_bs64
​    |   |   |-- train.log
​    |   |-- resnet50_lr0.001_opt-adam_bs64
​    |   |   |-- train.log
​    |   |-- resnet50_lr0.01_bs256
​    |   |   |-- train.log
​    |   |-- resnet50_lr0.01_bs64
​    |   |   |-- train.log
​    |   |-- resnet50_lr0.01_opt-adam_bs64
​    |   |   |-- train.log
​    |   |-- resnet50_lr0.1_bs256
​    |   |   |-- train.log
​    |   |-- resnet50_lr0.1_bs64
​    |       |-- train.log
​    |-- model_utils
​    |   |-- config.py
​    |   |-- config
​    |   |   |-- resnet101_imagenet2012_config.yaml
​    |   |   |-- resnet152_imagenet2012_config.yaml
​    |   |   |-- resnet18_cifar10_config.yaml
​    |   |   |-- resnet18_cifar10_config_gpu.yaml
​    |   |   |-- resnet18_imagenet2012_config.yaml
​    |   |   |-- resnet18_imagenet2012_config_gpu.yaml
​    |   |   |-- resnet34_imagenet2012_config.yaml
​    |   |   |-- resnet50_cifar10_config.yaml
​    |   |   |-- resnet50_imagenet2012_Ascend_Thor_config.yaml
​    |   |   |-- resnet50_imagenet2012_Boost_config.yaml
​    |   |   |-- resnet50_imagenet2012_config.yaml
​    |   |   |-- resnet50_imagenet2012_GPU_Thor_config.yaml
​    |   |   |-- resnet_benchmark_GPU.yaml
​    |   |   |-- se-resnet50_imagenet2012_config.yaml
​    |   |-- __pycache__
​    |       |-- config.cpython-37.pyc
​    |       |-- config.cpython-39.pyc
​    |-- output
​    |-- plot_log
​    |   |-- file_list.txt
​    |   |-- plot_log.py
​    |   |-- csv_data
​    |   |   |-- cnn101_lr0.1_bs64
​    |   |   |   |-- training_data.csv
​    |   |   |-- cnn152_lr0.1_bs64
​    |   |   |   |-- training_data.csv
​    |   |   |-- cnn50_lr0.1_bs64
​    |   |   |   |-- training_data.csv
​    |   |   |-- resnet101_lr0.1_bs64
​    |   |   |   |-- training_data.csv
​    |   |   |-- resnet152_lr0.1_bs64
​    |   |   |   |-- training_data.csv
​    |   |   |-- resnet50_attention_lr0.1_bs256
​    |   |   |   |-- training_data.csv
​    |   |   |-- resnet50_lr0.001_bs64
​    |   |   |   |-- training_data.csv
​    |   |   |-- resnet50_lr0.001_opt-adam_bs64
​    |   |   |   |-- training_data.csv
​    |   |   |-- resnet50_lr0.01_bs256
​    |   |   |   |-- training_data.csv
​    |   |   |-- resnet50_lr0.01_bs64
​    |   |   |   |-- training_data.csv
​    |   |   |-- resnet50_lr0.01_opt-adam_bs64
​    |   |   |   |-- training_data.csv
​    |   |   |-- resnet50_lr0.1_bs256
​    |   |   |   |-- training_data.csv
​    |   |   |-- resnet50_lr0.1_bs64
​    |   |       |-- training_data.csv
​    |   |-- img
​    |       |-- cnn101_lr0.1_bs64
​    |       |   |-- training_validation_plot.png
​    |       |-- cnn152_lr0.1_bs64
​    |       |   |-- training_validation_plot.png
​    |       |-- cnn50_lr0.1_bs64
​    |       |   |-- training_validation_plot.png
​    |       |-- resnet101_lr0.1_bs64
​    |       |   |-- training_validation_plot.png
​    |       |-- resnet152_lr0.1_bs64
​    |       |   |-- training_validation_plot.png
​    |       |-- resnet50_attention_lr0.1_bs256
​    |       |   |-- training_validation_plot.png
​    |       |-- resnet50_lr0.001_bs64
​    |       |   |-- training_validation_plot.png
​    |       |-- resnet50_lr0.001_opt-adam_bs64
​    |       |   |-- training_validation_plot.png
​    |       |-- resnet50_lr0.01_bs256
​    |       |   |-- training_validation_plot.png
​    |       |-- resnet50_lr0.01_bs64
​    |       |   |-- training_validation_plot.png
​    |       |-- resnet50_lr0.01_opt-adam_bs64
​    |       |   |-- training_validation_plot.png
​    |       |-- resnet50_lr0.1_bs256
​    |       |   |-- training_validation_plot.png
​    |       |-- resnet50_lr0.1_bs64
​    |           |-- training_validation_plot.png
​    |-- __pycache__
​        |-- resnet.cpython-39.pyc
```

代码说明

DataSet:

clean.py为数据清洗脚本,保证图片格式为JPEG格式,删除其他非法格式

partition.py为数据集划分脚本,9:1划分训练集和验证集

pachong.py为爬虫程序,在Win11环境下的个人PC中,通过添加Chrome驱动,修改查询词,即可将对应的图片下载到本地

Train:

train.py为训练脚本,定义超参,其他脚本文件类似,不过是修改了部分参数

export.py为导出脚本,将训练好的best.ckpt文件导出ONNX用于下一步的模型部署和UI展示

Log:

该部分为模型训练过程的日志保存文件夹

Output:

该部分为模型权重文件保存文件夹

Plot_Log:

该部分为模型训练的Loss和Acc数据处理和可视化部分,通过运行plot_log.py创建img文件夹和csv文件夹,保存可视化结果和对应的数据

Inner:

infer.py可进行推理,但没有UI界面

部署+UI:

onnx_infer.py该部分最好在Win个人PC中运行(本人在服务器中没有root权限,环境没法配置),需要下载onnxruntime、PyQt5

pip install onnxruntime
pip install PyQt5

UI界面展示:

image

Demo:

见Demo文件夹

项目总结

本项目比较基础的实现了一个有UI界面的二分类ResNet网络分类器,主要在训练网络过程中尝试了改进网络结构、调整超参、进行图像增强、加入Attention机制等方式,同时熟悉了ONNX部署模型,后续可作为Web后端做成一个完整的项目,并通过uni-app打包实现多平台部署。

水平有限,能力不足,欢迎issue、fork和star,给个免费的小星星!

About

Cat_Dog_Classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published