SCNet in an easier-to-install package and with some small changes. The result should be easier to integrate into your Python package.
See SCNet: Sparse Compression Network for Music Source Separation
hhSCNet inference --pathInput "./input/" --pathOutput "./output/" --modelConfiguration "./conf/config.yaml" --checkpoint "./result/checkpoint.th"
hhSCNet train --modelConfiguration "./conf/config.yaml" --pathSave "./result/"
from hhSCNet import runInference
runInference(
pathInput="./input/",
pathOutput="./output/",
modelConfiguration="./conf/config.yaml",
checkpoint="./result/checkpoint.th"
)
from hhSCNet import trainModel
trainModel(
modelConfiguration="./conf/config.yaml",
pathSave="./result/"
)
pip install hhSCNet@git+https://github.com/hunterhogan/hhSCNet.git
git clone https://github.com/hunterhogan/hhSCNet.git \path\to\hhSCNet
pip install hhSCNet@file:\path\to\hhSCNet
git clone https://github.com/hunterhogan/hhSCNet.git /path/to/hhSCNet
pip install hhSCNet@file:/path/to/hhSCNet
pip install --upgrade hhSCNet@git+https://github.com/hunterhogan/hhSCNet.git
@misc{tong2024scnet,
title={SCNet: Sparse Compression Network for Music Source Separation},
author={Weinan Tong and Jiaxu Zhu and Jun Chen and Shiyin Kang and Tao Jiang and Yang Li and Zhiyong Wu and Helen Meng},
year={2024},
eprint={2401.13276},
archivePrefix={arXiv},
primaryClass={eess.AS}
}