This project is an implementation of a deep neural network using only NumPy. It supports both classification and regression problems, minibatch training, and customizable network depth and activation functions.
- Clone the repository:
git clone <repository-url>
- Create Virtual Environment:
python3 -m venv ~/.venv_dnn source ~/.venv_dnn/bin/activate
- Install Dependencies:
pip3 install numpy
Navigate to the project directory and run prog1.py
with the necessary command-line arguments:
python prog1.py [-v] -train_feat TRAIN_FEAT_FN -train_target TRAIN_TARGET_FN -dev_feat DEV_FEAT_FN -dev_target DEV_TARGET_FN -epochs EPOCHS -learnrate LEARNRATE -nunits NUM_HIDDEN_UNITS -type PROBLEM_MODE -hidden_act HIDDEN_UNIT_ACTIVATION -init_range INIT_RANGE [-num_classes C] [-mb MINIBATCH_SIZE] [-nlayers NUM_HIDDEN_LAYERS]