This repository is related to the article
Théophile Rageau Laurence Likforman-Sulem, Attilio Fiandrotti, Victoria Eyharabide, Béatrice Caseau, Jean-Claude Cheynet, Character Recognition in Byzantine Seals with Deep Neural Networks, Digital Applications in Archaeology and Cultural Heritage, Volume 37, June 2025.
see also: https://github.com/LIK50/Byzantine_chars
Clone the main repo:
git clone https://github.com/idsinge/ocrseals.gitGet the yolov5 submodule:
cd ocrseals
git submodule update --initIf you don't already have one, create a venv:
python3 -m venv venv
. ./venv/bin/activateThen install pytorch with the appropriate method for your system by following the instructions at: https://pytorch.org/get-started/locally/ ; e.g.:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128Finally install requirements for yolov5 with:
pip install -r detection/yolov5/requirements.txtThe ocr_seals.py will apply detection, hough processing, classification, and transcript extraction for all images in data/input with a command like:
python3 ocr_seals.py --detection-model detection/detection_model.pt --classification-model classification/classification_model.pth --data dataThe data directory will then contain:
- in
data/detectthe results of the detection process - in
data/hougthe results of the hough process - in
data/transthe extracted transcriptions