Skip to content

Commit

Permalink
Up to date (#106)
Browse files Browse the repository at this point in the history
* update save_nyx_IGM

* fix import error
  • Loading branch information
jchavesmontero authored Oct 24, 2024
1 parent 7bae422 commit ff68f69
Showing 1 changed file with 56 additions and 17 deletions.
73 changes: 56 additions & 17 deletions scripts/save_nyx_IGM.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,9 +43,12 @@ def main():
dict_index[lab] = {}
dict_index[lab]["z"] = np.zeros(nz)
dict_index[lab]["tau_eff"] = np.zeros(nz)
dict_index[lab]["mF"] = np.zeros(nz)
dict_index[lab]["gamma"] = np.zeros(nz)
dict_index[lab]["sigT_kms"] = np.zeros(nz)
dict_index[lab]["sigT_Mpc"] = np.zeros(nz)
dict_index[lab]["kF_kms"] = np.zeros(nz)
dict_index[lab]["kF_Mpc"] = np.zeros(nz)

for ind_snap in list_snap:
for ind_book in range(len(training)):
Expand All @@ -57,12 +60,22 @@ def main():
& (training[ind_book]["ind_rescaling"] == ind_rescaling)
):
dict_index[lab]["z"][ind_snap] = training[ind_book]["z"]
dict_index[lab]["tau_eff"][ind_snap] = -np.log(
training[ind_book]["mF"]
)
dict_index[lab]["mF"][ind_snap] = training[ind_book][
"mF"
]
dict_index[lab]["gamma"][ind_snap] = training[ind_book][
"gamma"
]
dict_index[lab]["kF_Mpc"][ind_snap] = training[
ind_book
]["kF_Mpc"]
dict_index[lab]["sigT_Mpc"][ind_snap] = training[
ind_book
]["sigT_Mpc"]

dict_index[lab]["tau_eff"][ind_snap] = -np.log(
training[ind_book]["mF"]
)
_ = thermal_broadening_kms(training[ind_book]["T0"])
dict_index[lab]["sigT_kms"][ind_snap] = _

Expand All @@ -82,19 +95,25 @@ def main():
cosmo_params, linP_params = nyx_archive._get_emu_cosmo(
None, rsim_conv[sim_label]
)
dict_index[sim_label] = {}
dict_index[sim_label]["z"] = np.zeros(nz)
dict_index[sim_label]["tau_eff"] = np.zeros(nz)
dict_index[sim_label]["gamma"] = np.zeros(nz)
dict_index[sim_label]["sigT_kms"] = np.zeros(nz)
dict_index[sim_label]["kF_kms"] = np.zeros(nz)
if sim_label == "nyx_central":
ind_rescaling = 1
else:
ind_rescaling = None
testing = nyx_archive.get_testing_data(
sim_label, ind_rescaling=ind_rescaling
)

lab = sim_label
dict_index[lab] = {}
dict_index[lab]["z"] = np.zeros(nz)
dict_index[lab]["tau_eff"] = np.zeros(nz)
dict_index[lab]["mF"] = np.zeros(nz)
dict_index[lab]["gamma"] = np.zeros(nz)
dict_index[lab]["sigT_kms"] = np.zeros(nz)
dict_index[lab]["sigT_Mpc"] = np.zeros(nz)
dict_index[lab]["kF_kms"] = np.zeros(nz)
dict_index[lab]["kF_Mpc"] = np.zeros(nz)

for ind_snap in list_snap:
for ind_book in range(len(testing)):
if (
Expand All @@ -103,17 +122,20 @@ def main():
& (testing[ind_book]["ind_phase"] == ind_phase)
& (testing[ind_book]["sim_label"] == sim_label)
):
dict_index[sim_label]["z"][ind_snap] = testing[ind_book][
"z"
dict_index[lab]["z"][ind_snap] = testing[ind_book]["z"]
dict_index[lab]["mF"][ind_snap] = testing[ind_book]["mF"]
dict_index[lab]["gamma"][ind_snap] = testing[ind_book][
"gamma"
]
dict_index[lab]["sigT_Mpc"][ind_snap] = testing[ind_book][
"sigT_Mpc"
]
dict_index[sim_label]["tau_eff"][ind_snap] = -np.log(

dict_index[lab]["tau_eff"][ind_snap] = -np.log(
testing[ind_book]["mF"]
)
dict_index[sim_label]["gamma"][ind_snap] = testing[
ind_book
]["gamma"]
_ = thermal_broadening_kms(testing[ind_book]["T0"])
dict_index[sim_label]["sigT_kms"][ind_snap] = _
dict_index[lab]["sigT_kms"][ind_snap] = _

ind_z = np.argwhere(
np.round(testing[ind_book]["z"], 2) == linP_params["z"]
Expand All @@ -123,11 +145,28 @@ def main():
testing[ind_book]["kF_Mpc"]
/ linP_params["dkms_dMpc"][ind_z]
)
dict_index[sim_label]["kF_kms"][ind_snap] = _
dict_index[lab]["kF_kms"][ind_snap] = _
dict_index[lab]["kF_Mpc"][ind_snap] = testing[ind_book][
"kF_Mpc"
]
else:
print(
"no kF_Mpc in ", sim_label, testing[ind_book]["z"]
)

folder = os.environ["NYX_PATH"]
np.save(folder + "/IGM_histories.npy", dict_index)


if __name__ == "__main__":
main()


def metric_par(p0, p1, max_dist):
dist = (
((p0["mF"] - p1["mF"]) / max_dist["mF"]) ** 2
+ ((p0["sigT_Mpc"] - p1["sigT_Mpc"]) / max_dist["sigT_Mpc"]) ** 2
+ ((p0["gamma"] - p1["gamma"]) / max_dist["gamma"]) ** 2
+ ((p0["kF_Mpc"] - p1["kF_Mpc"]) / max_dist["kF_Mpc"]) ** 2
)
return np.sqrt(dist)

0 comments on commit ff68f69

Please sign in to comment.