Tested self-supervised technique Exploring simple siamese representation learning ov various CNN and ViT architectures using the self-supervised method from Exploring Simple Siamese Representation Learning
Git: https://github.com/facebookresearch/simsiam
Modify the configurations in .ynl
config files, then run:
python train_simsiam.py --config config.yml
for self-supervised training with sim
You can resume from a previously saved checkpoint and run the supervised task for classification by:
python main.py --resume path/to/checkpoint
Image size | Pretrain | Dataset | Validation acc | Test acc |
---|---|---|---|---|
32 x 32 | CIFAR-10 | CIFAR-10 | 88.59 | 88.89 |
32 x 32 | Random | CIFAR-10 | 83.87 | 83.12 |
32 x 32 | No | CIFAR-10 | 75.68 | 75.23 |
Model | Pretrained weights | Test acc |
---|---|---|
ResNet-18 | No | 65.73 |
STL-10 | 70.23 | |
ImageNet | 89.82 | |
EfficientNet-B0 | No | 65.30 |
STL-10 | 69.84 | |
ImageNet | 95.03 | |
ViT | No | 53.74 |
STL-10 | 60.45 | |
ImageNet | 96.26 | |
PiT | No | 58.14 |
STL-10 | 64.21 | |
ImageNet | 87.31 |
Model | Pretrained weights | ||||||||
---|---|---|---|---|---|---|---|---|---|
MacroAcc | MacroAUC | MicroAcc | MicroAUC | MacroAcc | MacroAUC | Micro Acc | MicroAUC | ||
ResNet-18 | No Pretrain | 0.5377 | 0.9339 | 0.6522 | 0.9552 | 0.5311 | 0.9301 | 0.6403 | 0.9517 |
ResNet-18 | CelebA | 0.5449 | 0.9340 | 0.6549 | 0.9608 | 0.5405 | 0.9310 | 0.6448 | 0.9592 |
ResNet-18 | Imagenet | 0.5898 | 0.9391 | 0.6690 | 0.9634 | 0.5826 | 0.9369 | 0.6622 | 0.9617 |
PiT | No Pretrain | 0.5301 | 0.9297 | 0.6412 | 0.9504 | 0.5289 | 0.9265 | 0.6374 | 0.9494 |
PiT | CelebA | 0.5413 | 0.9311 | 0.6579 | 0.9591 | 0.5389 | 0.9303 | 0.6416 | 0.9578 |
PiT | Imagenet | 0.5910 | 0.9440 | 0.6804 | 0.9671 | 0.5841 | 0.9487 | 0.6723 | 0.9623 |
Any kind of enhancement or contribution is welcomed.
Please cite
@inproceedings{chen2021exploring,
title={Exploring simple siamese representation learning},
author={Chen, Xinlei and He, Kaiming},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={15750--15758},
year={2021}
}
@article{papastratis2021ablation,
title={Ablation study of self-supervised learning for image classification},
author={Papastratis, Ilias},
journal={arXiv preprint arXiv:2112.02297},
year={2021}
}