Skip to content

iliasprc/SSL-vit-cnn

Repository files navigation

Ablation study on self-supervised training of CNNs and Vision Transformers (ViT)

Tested self-supervised technique Exploring simple siamese representation learning ov various CNN and ViT architectures using the self-supervised method from Exploring Simple Siamese Representation Learning

ssl

Git: https://github.com/facebookresearch/simsiam

Requirements

How to run

Using config files

Modify the configurations in .ynl config files, then run:

python train_simsiam.py --config config.yml

for self-supervised training with sim

Resuming from checkpoints

You can resume from a previously saved checkpoint and run the supervised task for classification by:

python main.py --resume path/to/checkpoint

Results

Training diagram

results

Tables from paper

Image size Pretrain Dataset Validation acc Test acc
32 x 32 CIFAR-10 CIFAR-10 88.59 88.89
32 x 32 Random CIFAR-10 83.87 83.12
32 x 32 No CIFAR-10 75.68 75.23
Model Pretrained weights Test acc
ResNet-18 No 65.73
STL-10 70.23
ImageNet 89.82
EfficientNet-B0 No 65.30
STL-10 69.84
ImageNet 95.03
ViT No 53.74
STL-10 60.45
ImageNet 96.26
PiT No 58.14
STL-10 64.21
ImageNet 87.31
Model Pretrained weights
MacroAcc MacroAUC MicroAcc MicroAUC MacroAcc MacroAUC Micro Acc MicroAUC
ResNet-18 No Pretrain 0.5377 0.9339 0.6522 0.9552 0.5311 0.9301 0.6403 0.9517
ResNet-18 CelebA 0.5449 0.9340 0.6549 0.9608 0.5405 0.9310 0.6448 0.9592
ResNet-18 Imagenet 0.5898 0.9391 0.6690 0.9634 0.5826 0.9369 0.6622 0.9617
PiT No Pretrain 0.5301 0.9297 0.6412 0.9504 0.5289 0.9265 0.6374 0.9494
PiT CelebA 0.5413 0.9311 0.6579 0.9591 0.5389 0.9303 0.6416 0.9578
PiT Imagenet 0.5910 0.9440 0.6804 0.9671 0.5841 0.9487 0.6723 0.9623

Contributing

Any kind of enhancement or contribution is welcomed.

Acknowledgments

Please cite

@inproceedings{chen2021exploring,
  title={Exploring simple siamese representation learning},
  author={Chen, Xinlei and He, Kaiming},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={15750--15758},
  year={2021}
}


@article{papastratis2021ablation,
  title={Ablation study of self-supervised learning for image classification},
  author={Papastratis, Ilias},
  journal={arXiv preprint arXiv:2112.02297},
  year={2021}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published