Skip to content

imsz5460/RotateCube

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

#OpenGL ES 打造一个一阶魔方

万丈高楼平地起,为了完成一个三阶魔方,本篇文章先达成一个小目标:打造一个一阶魔方。一阶魔方是什么鬼(其实我也想笑,实际上谁会去玩一个一阶的魔方)?对啰,就是一个正方体。把玩魔方时需要观察各个面,所以需要有个旋转魔方的功能,这次我们就做一个可以通过滑动手势全方位旋转的一阶魔方效果动图.gif ###静态的正方体 我们使用GLKit绘制一个正方体,GLKit是对OpenGL ES 的封装,内部帮我们做了很多事情,可以简化编程。我们知道,正方体有6个面,8个顶点。 定义数组:

static GLKVector3 vertices[8];
static GLKVector4 colors[6];
static GLKVector3 triangleVertices[36];
static GLKVector4 triangleColors[36];

初始化数据:

vertices[0] = GLKVector3Make(-0.5, -0.5,  0.5); // Left  bottom front
vertices[1] = GLKVector3Make( 0.5, -0.5,  0.5); // Right bottom front
vertices[2] = GLKVector3Make( 0.5,  0.5,  0.5); // Right top    front
vertices[3] = GLKVector3Make(-0.5,  0.5,  0.5); // Left  top    front
vertices[4] = GLKVector3Make(-0.5, -0.5, -0.5); // Left  bottom back
vertices[5] = GLKVector3Make( 0.5, -0.5, -0.5); // Right bottom back
vertices[6] = GLKVector3Make( 0.5,  0.5, -0.5); // Right top    back
vertices[7] = GLKVector3Make(-0.5,  0.5, -0.5); // Left  top    back

colors[0] = GLKVector4Make(0.000, 0.586, 1.000, 1.000); //  湖蓝
colors[1] = GLKVector4Make(1.0, 0.0, 0.0, 1.0); // 红
colors[2] = GLKVector4Make(0.119, 0.519, 0.142, 1.000); //  暗绿
colors[3] = GLKVector4Make(1.000, 0.652, 0.000, 1.000); // 橙
colors[4] = GLKVector4Make(1.000, 1.000, 0.000, 1.000); // 黄
colors[5] = GLKVector4Make(1.0, 1.0, 1.0, 1.0); // 白

//每个面需要6个点描述(2个三角形拼合而成),显然有些点是共用的,采用顶点索引,对应8个顶点
int vertexIndices[36] = {
  // Front
  0, 1, 2,
  0, 2, 3,
  // Right
  1, 5, 6,
  1, 6, 2,
  // Back
  5, 4, 7,
  5, 7, 6,
  // Left
  4, 0, 3,
  4, 3, 7,
  // Top
  3, 2, 6,
  3, 6, 7,
  // Bottom
  4, 5, 1,
  4, 1, 0,
};

for (int i = 0; i < 36; i++) {
    triangleVertices[i] = vertices[vertexIndices[i]];
    triangleColors[i] = colors[i/6];
}

屏幕绘制

-(void)update{
    CGSize size = self.view.bounds.size;
    float aspect = fabs(size.width/size.height);
    GLKMatrix4 projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65), aspect, 0.5, 15);
    GLKMatrix4 modelviewMatricx = GLKMatrix4Translate(GLKMatrix4Identity, 0,0, -3);
    
    modelviewMatricx = GLKMatrix4Multiply(modelviewMatricx,_rotateMatrix4);
    self.cube.effect.transform.modelviewMatrix = modelviewMatricx;
    self.cube.effect.transform.projectionMatrix = projectionMatrix;
}

- (void)draw {
  [effect prepareToDraw];
  
  glEnable(GL_DEPTH_TEST);
  glEnable(GL_CULL_FACE);
  
  glEnableVertexAttribArray(GLKVertexAttribPosition);
  glVertexAttribPointer(GLKVertexAttribPosition, 3, GL_FLOAT, GL_FALSE, 0, triangleVertices);
  
  glEnableVertexAttribArray(GLKVertexAttribColor);
  glVertexAttribPointer(GLKVertexAttribColor, 4, GL_FLOAT, GL_FALSE, 0, triangleColors);
  
  glDrawArrays(GL_TRIANGLES, 0, 36);
  
  glDisableVertexAttribArray(GLKVertexAttribPosition);
  glDisableVertexAttribArray(GLKVertexAttribColor);
}

###手势操作旋转立方体

功能描述: 通过触摸手势操作,实现全方位旋转。 思路: 构建一个三维球空间,通过屏幕的二维触摸轨迹模拟三维的球平面的滑动轨迹。

数学建模,如下图所示:

旋转球空间模型.png 假设屏幕触摸点为B,我们将其对应为球面上的点A,OB为OA在xy平面上的投影。不难看出二维与三维的映射关系。 令A点坐标为(a,b,c),B点坐标(a,b),OA长度为R, 则有a^2 + b^2 + c^2 = R^2。 根据时间片内手指滑动的方向求出球旋转的轴向量。

二维OB向量转为三维OA向量的算法:

 _ball.radius=170;
 _ball.origin=GLKVector3Make(0, 0, 0);
//二维OB向量转为三维OA向量的算法
-(GLKVector3)touchPointVector3FromVector2: (GLKVector2)vector2 {
    GLfloat x,y,z;
    x=vector2.x;
    y=-vector2.y;
   GLfloat safeRadius = _ball.radius-1;
// 超出圆形区域的处理
    if(safeRadius < GLKVector2Length(vector2)) {
        float theta = atan2f(y, x);
        x = safeRadius * cosf(theta);
        y = safeRadius * sinf(theta);
    }
    z = sqrtf(square(_ball.radius) - square(x) - square(y));
    GLKVector3 v=GLKVector3Make(x,y,z);
    return GLKVector3MultiplyScalar( GLKVector3Normalize(v),  _ball.radius) ;
}

函数说明:GLKVector3MultiplyScalar 返回通过将向量的每个分量乘以标量值创建的新向量。

手指滑动过程中的旋转矩阵:

_oldMatria4=GLKMatrix4Identity;
-(GLKMatrix4)touchMoveAtX:(GLfloat)x AtY:(GLfloat)y{
    isMoved=YES;
    GLKVector3 movePoint= [self touchPointVector3FromVector2:GLKVector2Make(x-screenW*0.5, y-screenH*0.5)];
    
    return GLKMatrix4Multiply(GLKMatrix4RotateWithVector3(GLKMatrix4Identity,
                                       acosf(GLKVector3DotProduct(movePoint,_touchPoint)/(GLKVector3Length(movePoint)*GLKVector3Length(_touchPoint))),
                                        GLKVector3CrossProduct( _touchPoint,movePoint))
                              ,_oldMatria4);
}

函数说明: GLKVector3DotProduct 返回两个向量的点积。 GLKVector3CrossProduct 返回两个向量的交叉乘积。 GLKMatrix4 GLKMatrix4RotateWithVector3(GLKMatrix4 matrix, float radians, GLKVector3 axisVector) 矩阵matrix绕axisVector向量旋转radians,返回新矩阵。

#pragma mark 触屏处理
-(void)touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event{
    UITouch *touch = [touches anyObject];
    CGPoint touchPoint = [touch locationInView:self.view];
    _tapCount=[touch tapCount];
    if (_tapCount == 2) {

    }else if (_tapCount == 1){
    [self.trackBall touchDownAtX:touchPoint.x AtY:touchPoint.y];
    }
}

- (void)touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event{
    UITouch *touch = [touches anyObject];
    CGPoint point = [touch locationInView:self.view];
 if (_tapCount == 1){
     [self.trackBall touchUpAtX:point.x AtY:point.y];
     self.cube.effect.transform.modelviewMatrix = _rotateMatrix4;
 }
}

- (void)touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event{
    UITouch *touch = [touches anyObject];
    CGPoint point = [touch locationInView:self.view];
    if (_tapCount == 2) {

    }else if (_tapCount == 1){
    _rotateMatrix4 = [self.trackBall touchMoveAtX:point.x AtY:point.y];
    self.cube.effect.transform.modelviewMatrix = _rotateMatrix4;
    }
}

本文demo源码 传送门

###参考

GLKVector3参考 进入 3D 世界,从正方体开始

About

OpenGL ES 打造的魔方游戏

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published