-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
#4 - Add Levenshtein string matching recommender
- Add recommender
- Loading branch information
Showing
1 changed file
with
76 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
import logging | ||
from itertools import chain | ||
from typing import List | ||
|
||
from cassis import Cas | ||
|
||
from sklearn.preprocessing import LabelEncoder | ||
|
||
from rust_fst import Map | ||
|
||
import more_itertools as mit | ||
|
||
from ariadne.classifier import Classifier | ||
from ariadne.constants import TOKEN_TYPE | ||
from ariadne.protocol import TrainingDocument | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
|
||
class LevenshteinStringMatcher(Classifier): | ||
def fit(self, documents: List[TrainingDocument], layer: str, feature: str, project_id, user_id: str): | ||
logger.debug("Start training for user [%s]", user_id) | ||
|
||
mentions = [] | ||
labels = [] | ||
|
||
for document in documents: | ||
cas = document.cas | ||
for annotation in cas.select(layer): | ||
mention = annotation.get_covered_text() | ||
label = getattr(annotation, feature) | ||
|
||
mentions.append(mention) | ||
labels.append(label) | ||
|
||
le = LabelEncoder() | ||
le.fit(labels) | ||
|
||
items = [(k, v) for k, v in sorted(zip(mentions, le.transform(labels)))] | ||
|
||
# The map takes care of saving itself | ||
fst_path = self._get_fst_path(user_id) | ||
m = Map.from_iter(items, path=fst_path) | ||
|
||
logger.debug(f"Training finished for user [%s]", user_id) | ||
|
||
# We just save the LabelEncoder, the map saved itself | ||
self._save_model(user_id, le) | ||
|
||
def predict(self, cas: Cas, layer: str, feature: str, project_id: str, document_id: str, user_id: str): | ||
le: LabelEncoder = self._load_model(user_id) | ||
|
||
if le is None: | ||
return | ||
|
||
fst_path = self._get_fst_path(user_id) | ||
m = Map(fst_path) | ||
|
||
# We iterate over the all candidates and check whether they match | ||
for (begin, end, term) in chain(self._generate_candidates(cas, 1), self._generate_candidates(cas, 2)): | ||
for mention, label_id in m.search(term=term, max_dist=2): | ||
label = le.inverse_transform([label_id])[0] | ||
prediction = self.create_prediction(cas, layer, feature, begin, end, label) | ||
cas.add_annotation(prediction) | ||
|
||
def _generate_candidates(self, cas: Cas, n: int): | ||
# We generate token n-grams | ||
for tokens in mit.windowed(cas.select(TOKEN_TYPE), n): | ||
begin = tokens[0].begin | ||
end = tokens[-1].end | ||
text = cas.sofa_string[begin:end] | ||
yield (begin, end, text) | ||
|
||
def _get_fst_path(self, user_id: str) -> str: | ||
p = self.model_directory / self.name / f"model_{user_id}.fst" | ||
return str(p) |