-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0c831fc
commit 085f90e
Showing
37 changed files
with
12,441 additions
and
537 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
from typing import Dict | ||
|
||
from desdeo_emo.EAs.BaseEA import BaseDecompositionEA | ||
from desdeo_emo.population.Population import Population | ||
from desdeo_emo.selection.NUMS_select import NUMS_select | ||
from desdeo_problem import MOProblem | ||
import numpy as np | ||
|
||
class NSGAIIINUMS(BaseDecompositionEA): | ||
"""Python Implementation of NSGA-III. Based on the pymoo package. | ||
Most of the relevant code is contained in the super class. This class just assigns | ||
the NSGAIII selection operator to BaseDecompositionEA. | ||
Parameters | ||
---------- | ||
problem : MOProblem | ||
The problem class object specifying the details of the problem. | ||
population_size : int, optional | ||
The desired population size, by default None, which sets up a default value | ||
of population size depending upon the dimensionaly of the problem. | ||
population_params : Dict, optional | ||
The parameters for the population class, by default None. See | ||
desdeo_emo.population.Population for more details. | ||
initial_population : Population, optional | ||
An initial population class, by default None. Use this if you want to set up | ||
a specific starting population, such as when the output of one EA is to be | ||
used as the input of another. | ||
lattice_resolution : int, optional | ||
The number of divisions along individual axes in the objective space to be | ||
used while creating the reference vector lattice by the simplex lattice | ||
design. By default None | ||
selection_type : str, optional | ||
One of ["mean", "optimistic", "robust"]. To be used in data-driven optimization. | ||
To be used only with surrogate models which return an "uncertainity" factor. | ||
Using "mean" is equivalent to using the mean predicted values from the surrogate | ||
models and is the default case. | ||
Using "optimistic" results in using (mean - uncertainity) values from the | ||
the surrogate models as the predicted value (in case of minimization). It is | ||
(mean + uncertainity for maximization). | ||
Using "robust" is the opposite of using "optimistic". | ||
a_priori : bool, optional | ||
A bool variable defining whether a priori preference is to be used or not. | ||
By default False | ||
interact : bool, optional | ||
A bool variable defining whether interactive preference is to be used or | ||
not. By default False | ||
n_iterations : int, optional | ||
The total number of iterations to be run, by default 10. This is not a hard | ||
limit and is only used for an internal counter. | ||
n_gen_per_iter : int, optional | ||
The total number of generations in an iteration to be run, by default 100. | ||
This is not a hard limit and is only used for an internal counter. | ||
total_function_evaluations :int, optional | ||
Set an upper limit to the total number of function evaluations. When set to | ||
zero, this argument is ignored and other termination criteria are used. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
problem: MOProblem, | ||
population_size: int = None, | ||
population_params: Dict = None, | ||
n_survive: int = None, | ||
initial_population: Population = None, | ||
lattice_resolution: int = None, | ||
selection_type: str = None, | ||
interact: bool = False, | ||
use_surrogates: bool = False, | ||
n_iterations: int = 10, | ||
n_gen_per_iter: int = 100, | ||
total_function_evaluations: int = 0, | ||
keep_archive: bool = False, | ||
): | ||
super().__init__( | ||
problem=problem, | ||
population_size=population_size, | ||
population_params=population_params, | ||
initial_population=initial_population, | ||
lattice_resolution=lattice_resolution, | ||
interact=interact, | ||
use_surrogates=use_surrogates, | ||
n_iterations=n_iterations, | ||
n_gen_per_iter=n_gen_per_iter, | ||
total_function_evaluations=total_function_evaluations, | ||
keep_archive=keep_archive, | ||
) | ||
self.selection_type = selection_type | ||
selection_operator = NUMS_select( | ||
self.population, n_survive, selection_type=selection_type | ||
) | ||
self.selection_operator = selection_operator |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.