Skip to content
forked from luispcunha/gasten

Experiments for paper "Generative Adversarial Stress Test Networks" accepted at IDA conference 2023

License

Notifications You must be signed in to change notification settings

inesgomes/gasten

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

56 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GASTeN Project

License

Variation of GANs that, given a model, generates realistic data that is classified with low confidence by a given classifier. Results show that the approach is able to generate images that are closer to the frontier when compared to the original ones, but still realistic. Manual inspection confirms that some of those images are confusing even for humans.

Paper: GASTeN: Generative Adversarial Stress Test Networks

Create Virtual Environment

mamba create -n gasten python=3.10

mamba activate gasten

mamba install pip-tools

Run

env file

Create .env file with the following information

CUDA_VISIBLE_DEVICES=0
FILESDIR=<file directory>
ENTITY=<wandb entity to track experiments>

Preparation

Step Description command
1 create FID score for all pairs of numbers python src/gen_pairwise_inception.py
1.1 run for one pair only (e.g. 1vs7) python -m src.metrics.fid --data data/ --dataset mnist --pos 7 --neg 1
2 create binary classifiers given a pair of numbers (e.g. 1vs7) python src/gen_classifiers.py --pos 7 --neg 1 --nf 1,2,4 --epochs 1
3 create test noise python src/gen_test_noise.py --nz 2000 --z-dim 64

GASTeN

Run GASTeN to create images in the bounday between 1 and 7.

python -m src --config experiments/mnist_7v1.yml

About

Experiments for paper "Generative Adversarial Stress Test Networks" accepted at IDA conference 2023

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.8%
  • Shell 0.2%