A simple script to evaluate generative rationale
To run this model, we need to first:
- create a
model_components
,data
, andoutput
, directory - download GloVe vectors from http://nlp.stanford.edu/data/glove.6B.zip and extract the 200 dimensional vector to
model_components
- download http://evexdb.org/pmresources/vec-space-models/PubMed-w2v.bin to
model_components
- set up a virtual env meeting requirements.txt
- download data from the primary website to
data
and extract each dataset to its respective directory - ensure that we have at least an 11G GPU. Reducing batch sizes may enable running on a smaller GPU.
bash evaluate.sh
- jsonl_generator (local) -> docs.jsonl(val + test), val.jsonl, test.jsonl (eraser/data)
- new_evaluation (training VM) -> predict_results_claimdiff_val, predict_results_claimdiff_test (./prediction)
- predict_results_claimdiff -> test_decoded_generator or pred_to_eval (local) -> test_decoded.jsonl (eraser/output)
- Run
evaluate.sh