The thief has found himself a new place for his thievery again. There is only one entrance to this area, called the "root." Besides the root, each house has one and only one parent house. After a tour, the smart thief realized that "all houses in this place forms a binary tree". It will automatically contact the police if two directly-linked houses were broken into on the same night.
Determine the maximum amount of money the thief can rob tonight without alerting the police.
Example 1:
3
/ \
2 3
\ \
3 1
Maximum amount of money the thief can rob = 3 + 3 + 1 = 7
.
Example 2:
3
/ \
4 5
/ \ \
1 3 1
Maximum amount of money the thief can rob = 4 + 5 = 9
.
最开始想到直接层次遍历,获取每一层的值,比如Example 2为[3,9,5]
,然后转化为House Robber求解。时间复杂度时O(n),空间复杂度是O(n)。
看提示说使用DFS,一个节点要么选择要么不选择,设当前节点为p,yes为选择p节点的值,no为不选择p节点的值,f(p)为p节点的值,则:
- 若p为null,则yes = 0, no = 0;
- 若选择p,则不能选择p的孩子节点,则
p->yes = f(p->left->no) + f(p->right->no) + p->val
; - 若不选择p节点,则结果为孩子节点的最大值,即
p->no = max(f(p->left->yes), f(p->left->no)) + max(f(p->right->yes), f(p->right->no))
void dfs(TreeNode *root, int *yes, int *no) {
if (root == nullptr) {
*yes = 0;
*no = 0;
return;
}
int left_yes, left_no, right_yes, right_no;
dfs(root->left, &left_yes, &left_no);
dfs(root->right, &right_yes, &right_no);
*yes = left_no + right_no + root->val;
*no = max(left_yes, left_no) + max(right_yes, right_no);
}
最后返回max(root->yes, root->no)
即可。
int rob(TreeNode *root) {
int yes = 0, no = 0;
dfs(root, &yes, &no);
return max(yes, no);
}
- House Robber: 线性的情况
- House Robber II:线性的情况,首位相连
- House Robber III:树形结构