Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add support and optimization for minicpmo audio part #12716

Merged
merged 1 commit into from
Jan 16, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 15 additions & 9 deletions python/llm/src/ipex_llm/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1030,9 +1030,9 @@ def _optimize_pre(model, qtype=None):
model.llm.config.model_type = "minicpmv"
elif model.config.model_type == "minicpmo":
# vpm opt
from ipex_llm.transformers.models.minicpmv import merge_qkv
model.vpm.apply(merge_qkv)

if hasattr(model, "vpm"):
from ipex_llm.transformers.models.minicpmv import merge_qkv
model.vpm.apply(merge_qkv)
# llm opt
model.llm.config.model_type = "qwen2"
_optimize_pre(model.llm, qtype=qtype)
Expand Down Expand Up @@ -1955,12 +1955,18 @@ def _optimize_post(model):
model.chat = MethodType(minicpmv_chat, model)
elif model.config.model_type == "minicpmo":
# vpm opt
vpm_modeling_module_name = model.vpm.__class__.__module__
vpm_module = importlib.import_module(vpm_modeling_module_name)

from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
convert_forward(model.vpm, vpm_module.SiglipAttention, siglip_attention_forward)

if hasattr(model, "vpm"):
vpm_modeling_module_name = model.vpm.__class__.__module__
vpm_module = importlib.import_module(vpm_modeling_module_name)
from ipex_llm.transformers.models.minicpmv import siglip_attention_forward
convert_forward(model.vpm, vpm_module.SiglipAttention, siglip_attention_forward)
# apm opt
if hasattr(model, "apm"):
apm_modeling_module_name = model.apm.__class__.__module__
apm_module = importlib.import_module(apm_modeling_module_name)
from transformers.models.whisper.modeling_whisper import WhisperSdpaAttention
from ipex_llm.transformers.models.whisper import whisper_attention_forward
convert_forward(model.apm, WhisperSdpaAttention, whisper_attention_forward)
# llm opt
model.llm.config.model_type = "qwen2"
_optimize_post(model.llm)
Expand Down
103 changes: 103 additions & 0 deletions python/llm/src/ipex_llm/transformers/models/whisper.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
# which is licensed under Apache License 2.0:
#
# Copyright 2022 The OpenAI Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import torch

from typing import Optional, Tuple
from transformers.cache_utils import EncoderDecoderCache

from ipex_llm.transformers.utils import invalidInputError
from ipex_llm.transformers.models.common import scaled_dot_product_attention


def whisper_attention_forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[EncoderDecoderCache] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
invalidInputError(not output_attentions and layer_head_mask is None,
"`output_attentions` and `layer_head_mask` are not supported")

# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()

# get query proj
query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz)

if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
past_key_value = past_key_value.cross_attention_cache
else:
past_key_value = past_key_value.self_attention_cache

# use key_value_states if cross attention
current_states = key_value_states if key_value_states is not None else hidden_states
if is_cross_attention and past_key_value and is_updated:
# reuse k,v, cross_attentions
key_states = past_key_value.key_cache[self.layer_idx]
value_states = past_key_value.value_cache[self.layer_idx]
else:
key_states = self._shape(self.k_proj(current_states), -1, bsz)
value_states = self._shape(self.v_proj(current_states), -1, bsz)
if past_key_value is not None:
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)

# IPEX-LLM OPT: sdpa
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
attn_output = scaled_dot_product_attention(
query_states,
key_states.contiguous(),
value_states.contiguous(),
attention_mask,
is_causal
)

attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)

attn_output = self.out_proj(attn_output)

return attn_output, None, past_key_value
Loading