Date | Topic |
---|---|
11.02 | Intro |
18.02 | Hyperparameter optimization: SMBO |
25.02 | Technincal meeting 1: project discussion |
4.03 | Hyperparameter optimization: gradient-based |
11.03 | Structure selection |
18.03 | Technincal meeting 2: proof of concept discussion |
25.03 | Meta-optimization + Genetics |
1.04 | Knowledge transfer and distillation |
8.04 | Multi-task learning |
15.04 | Gaussian processes, SSM |
22.04 | Model ensembles |
29.04 | Hierarchical models |
6.05 | Technical meeting 3: pre-final discussion |
13.05 | Latent space projection |
20.05 | Project finalizing, Final scores |
- Gradient flows
- NTK
- Agents
Date | Topic |
---|---|
10.09 | Intro |
17.09 | Distributions, expectation, likelihood |
24.09 | Bayesian inference, sampling |
1.10 | Technical meeting |
8.10 | Complexity |
15.10 | Var inference |
22.10 | Var inference 2 |
31.10 | Diffusion models, score matching |
5.11 | Technical meeting 2 |
12.11 | Generative and discriminative models |
19.11 | Graphical models |
26.11 | Technical meeting 3 |
3.12 | Project review |
10.12 | Technical meeting 4 |
17.12 | Final scores, Gradient flows |
- Genetics
- Metaoptimization
- Hierarchical models
- Knowledge transfer/distillation
- Model ensembles, Mixture of experts
- Structure priors
- Hyperparameter optimization: SMBO, GD
- NAS
- Transfer learning
- Domain adaptation
- Multitask learning
- SSM
- Agents