-
Notifications
You must be signed in to change notification settings - Fork 31
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #94 from voto-ocean-knowledge/callum-patch-0
add simple glider data example
- Loading branch information
Showing
1 changed file
with
218 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Setup\n", | ||
"\n", | ||
"Import ioos qc libraries, as well as erddapy for data fetching and Bokeh for plotting" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import ioos_qc\n", | ||
"from ioos_qc.config import Config\n", | ||
"from ioos_qc.qartod import aggregate\n", | ||
"from ioos_qc.streams import XarrayStream\n", | ||
"from ioos_qc.results import collect_results, CollectedResult\n", | ||
"import xarray as xr\n", | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"import pooch\n", | ||
"from bokeh.plotting import output_notebook\n", | ||
"\n", | ||
"output_notebook()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Load the dataset\n", | ||
"\n", | ||
"Here we use a glider mission from the Baltic as a test dataset.\n", | ||
"\n", | ||
"https://observations.voiceoftheocean.org/SEA067/M37" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"url = f\"https://github.com/ioos/ioos_qc/releases/download\"\n", | ||
"version = \"2.1.0\"\n", | ||
"fname = \"nrt_SEA067_M37.nc\"\n", | ||
"\n", | ||
"download = pooch.retrieve(\n", | ||
" url=f\"{url}/{version}/{fname}\",\n", | ||
" known_hash=\"sha256:06e8a79cc17a2d55bb32dbfdc85f9922c1a1cc14726df004ae971125f91b27ac\",\n", | ||
")\n", | ||
"ds = xr.open_dataset(download)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Generate test configs \n", | ||
"Make dictionaries of test configurations for salinity. To generate salinity flags, we test against salinity, conductivity and temperature" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"config = {\n", | ||
" \"temperature\": {\n", | ||
" \"qartod\": {\n", | ||
" \"gross_range_test\": {\"suspect_span\": [0, 30], \"fail_span\": [-2.5, 40]},\n", | ||
" \"spike_test\": {\"suspect_threshold\": 2.0, \"fail_threshold\": 6.0}\n", | ||
" }\n", | ||
" },\n", | ||
" \"conductivity\": {\n", | ||
" \"qartod\": {\n", | ||
" \"gross_range_test\": {\"suspect_span\": [6, 42], \"fail_span\": [3, 45]}\n", | ||
" }\n", | ||
" },\n", | ||
" \"salinity\": {\n", | ||
" \"qartod\": {\n", | ||
" \"gross_range_test\": {\"suspect_span\": [5, 38], \"fail_span\": [2, 41]},\n", | ||
" \"spike_test\": {\"suspect_threshold\": 0.3, \"fail_threshold\": 0.9},\n", | ||
" \"location_test\": {\"bbox\": [10, 50, 25, 60]},\n", | ||
" }\n", | ||
" }\n", | ||
"}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Run the QC\n", | ||
"Create the config stream and run it on the salinity data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"c = Config(config)\n", | ||
"qc = XarrayStream(ds, lon=\"longitude\", lat=\"latitude\")\n", | ||
"runner = list(qc.run(c))\n", | ||
"results = collect_results(runner, how='list')\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### Aggregate results\n", | ||
"\n", | ||
"This makes the plotting a bit simpler, as we roll up the flags into one array" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"agg = CollectedResult(\n", | ||
" stream_id='',\n", | ||
" package='qartod',\n", | ||
" test='qc_rollup',\n", | ||
" function=aggregate,\n", | ||
" results=aggregate(results),\n", | ||
" tinp=qc.time(),\n", | ||
" data=ds\n", | ||
")\n", | ||
"flag_vals = agg.results" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# Plot results" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"time = ds.time\n", | ||
"meaning = np.empty(len(time), dtype=object)\n", | ||
"meaning[:] = \"UNKNOWN\"\n", | ||
"meaning[flag_vals == 1] = \"GOOD\"\n", | ||
"meaning[flag_vals == 9] = \"MISSING\"\n", | ||
"meaning[flag_vals == 3] = \"SUSPECT\"\n", | ||
"meaning[flag_vals == 4] = \"FAIL\"\n", | ||
"df = pd.DataFrame({\"time\": time, \"salinity\": ds[\"salinity\"], \"flag\": flag_vals, \"depth\": ds.depth, \"quality control\": meaning})" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from bokeh.plotting import figure, show\n", | ||
"from bokeh.sampledata.penguins import data\n", | ||
"from bokeh.transform import factor_cmap, factor_mark\n", | ||
"\n", | ||
"flag_vals = [\"GOOD\",\"UNKNOWN\",\"MISSING\",\"SUSPECT\",\"FAIL\"]\n", | ||
"markers = ['hex', 'circle_x', 'circle', 'triangle', 'square']\n", | ||
"\n", | ||
"p = figure(title = \"Salinity flags\", background_fill_color=\"#fafafa\", x_axis_type='datetime')\n", | ||
"p.yaxis.axis_label = 'salinity (PSU)'\n", | ||
"\n", | ||
"p.scatter(\"time\", \"salinity\", source=df,\n", | ||
" legend_group=\"quality control\", fill_alpha=0.4, size=12,\n", | ||
" marker=factor_mark('quality control', markers, flag_vals),\n", | ||
" color=factor_cmap('quality control', 'Category10_5', flag_vals))\n", | ||
"\n", | ||
"p.legend.location = \"top_left\"\n", | ||
"p.legend.title = \"IOOS flags\"\n", | ||
"\n", | ||
"show(p)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.4" | ||
}, | ||
"nbsphinx": { | ||
"orphan": true | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |