Skip to content

pytorch replicate of TP-GAN "Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis"

License

Notifications You must be signed in to change notification settings

iwtw/pytorch-TP-GAN

Repository files navigation

TP-GAN

pytorch replicate of TP-GAN "Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis"

what's different from the official code

  • I use wasserstein-GP as adversial loss
  • I tried adopting modified ReNet18 or MobilNetV2 to extract features to compute perceptual loss (idendity preserving loss in the original paper)
  • remove batch normalization layers
  • remove the last tanh activation in generator
  • change the first conv and the first residual block in decoder of generator's kernel size from 2 to 3

requirements

  • python3
  • tensorboardX
  • pytorch 0.3.1

usage

to train feature extract models

vim pretrain_config.py #set options
python pretrain.py

to train TP-GAN

vim config.py #set options
python train.py

to test TP-GAN

python test.py $args

##some other implementations

About

pytorch replicate of TP-GAN "Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages