Skip to content

jahongir7174/EfficientNetV2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EfficientNetV2 implementation using PyTorch

Steps

  • imagenet path by changing data_dir in main.py
  • bash ./main.sh $ --train for training model, $ is number of GPUs
  • EfficientNet class in nets/nn.py for different versions

Note

  • the default training configuration is for EfficientNetV2-S

Parameters and FLOPS

  • python main.py --benchmark
Number of parameters: 21458488
Time per operator type:
        1504.95 ms.    80.5982%. Conv
        225.509 ms.    12.0772%. Sigmoid
        115.112 ms.     6.1649%. Mul
        12.7341 ms.   0.681982%. Add
        7.50523 ms.   0.401946%. AveragePool
        1.40185 ms.  0.0750768%. FC
      0.0112697 ms. 0.000603555%. Flatten
        1867.22 ms in Total
FLOP per operator type:
        16.7287 GFLOP.     99.708%. Conv
      0.0412707 GFLOP.   0.245986%. Mul
     0.00516096 GFLOP.  0.0307609%. Add
       0.002561 GFLOP.  0.0152643%. FC
        16.7777 GFLOP in Total
Feature Memory Read per operator type:
        291.409 MB.    51.8224%. Mul
        224.497 MB.    39.9231%. Conv
        41.2877 MB.    7.34234%. Add
        5.12912 MB.   0.912131%. FC
        562.323 MB in Total
Feature Memory Written per operator type:
        165.083 MB.    50.2087%. Mul
        143.062 MB.    43.5114%. Conv
        20.6438 MB.    6.27867%. Add
          0.004 MB. 0.00121657%. FC
        328.793 MB in Total
Parameter Memory per operator type:
        79.9537 MB.    93.9773%. Conv
          5.124 MB.    6.02273%. FC
              0 MB.          0%. Add
              0 MB.          0%. Mul
        85.0777 MB in Total

Results

  • python main.py --test for trained model testing
name resolution acc@1 acc@5 #params FLOPS resample training loss
EfficientNetV2-S 384x384 83.9 96.7 21.46 16.7777 BILINEAR CrossEntropy
EfficientNetV2-S 384x384 - - 21.46 16.7777 BILINEAR PolyLoss
EfficientNetV2-M - - - - - - -
EfficientNetV2-L - - - - - - -