Initially, this R script was designed to replicate the radiocarbon calibration results generated by Calib 8.02. Now, the script also enhances resolution and allows for easy customization of color palettes.
This script aims to replicate the radiocarbon calibration functionality of Calib 8.02 software on any operating system using the R programming language. Consequently, the data input format aligns with that of Calib 8.02, utilizing the IntCal package developed by Maarten Blaauw(2). The script can also generate plots and save output data in .csv format. Below, I’ve included the script and an example using published data from Guiñez et al., 2014(3).
The input table is displayed below. It is crucial to sort the data in this specific format.
Table. Input table of Radiocarbon samples pulled out Mejillones core (Guiñez et al. 2014) |
In the first plot, you can refer to the format of the outcome. The x-axis represents the range of calibrated ages, while the y-axis shows the density probability of calibration. The black, green, and gray lines indicate the maximum probability, median, and mean calibrated ages, respectively. Additionally, the blue and red lines denote the calibration limits according to one standard deviation (one sigma: 68%). You can adjust the sigma value if desired.
Picture 1. Outcome plot of sample on 54cm colour-scale (Guiñez et al. 2014) |
The second plot is similar to the previous one; however, it is presented in grayscale.
Picture 2. Outcome plot of sample on 54cm in gray-scale (Guiñez et al. 2014) |
Finally, This script is created an outcome table where you are able to find the maximum, median, and mean calibrate age in columns. the outcome table will be saved together with plots (Table 2.) and I attached a function in source (4).
Table 2. Output table of Radiocarbon samples pulled out Mejillones core (Guiñez et al. 2014) |
- Select the whole script and pulse Ctrl+ Enter.
- To wait for its outcomes when you will hear Mario Bross sound the means it is finished.
- Bon appetit!!
Some plots may appear distorted, so you should adjust this script to improve the margins, resolution, or font of the images as needed.
Finally, it were showed a source of Calib2.R(4).
#########################################################################
calibR2=function(input=input,sigma=c(1,2,3,.68,.95,.99,"1s","2s","3s","1sigma","2sigma","3sigma"),
curve=c(1,2,3,"intcal20", "marine20","shcal20",
"marine13", "shcal13",
"nh1", "nh2", "nh3", "sh1-2", "sh3", "nh1_monthly", "nh1_monthly", "nh2_monthly",
"nh3_monthly", "sh1-2_monthly", "sh3_monthly", "kure", "levinKromer",
"santos"),
colour=c("default","color","colour",1,T,"yes","YES","Yes","YEs","YeS","yeS","yES",
"minimal","gray","grey",0,F,"no","No","nO","NO",FALSE),
show.table=c(T,1,"yes","YES","Yes","YEs","YeS","yES",
"default",F,0,"no","No","nO","NO"),
show.plot=c("both",T,1,"yes","YES","Yes","YEs","YeS","yES",
"minimal","default","FALSE",F,0,"no","No","nO","NO")){
################################################################################
# License: GNU
# Author: José Solís, Octuber 2024
# email: solisbenites.jose@gmail.com
################################################################################
require("IntCal")
require("ggplot2")
require("ggh4x")
require("gridExtra")
require("devtools")
require("magrittr")
require("scales")
require("ggrepel")
require("beepr")
require("ggrepel")
################################################################################
begin=Sys.time()#Begining time
if (missing(input)){beep(7);stop("Didn´t find a input data")}
if (missing(sigma)) sigma=0.68
if (missing(curve)) "marine20"
if (missing(colour)) colour="minimal"
if (missing(show.table)) show.table=F
if (missing(show.plot)) show.plot=F
dd<- input[-c(1),]
dd=as.data.frame(dd)
dct=getwd()#name of directory
cat(paste0("To begin to calibrate of ",dd$Lab[1], sep="\n\n"))
setwd(dct)#directory
namess=c("Lab","Sample","X14C.BP","X14C.Age.SD","Lab.Error",
"Age.Span" ,"Uncorrected.14C" ,"Uncorrected.14C.SD" ,"d13C" ,"d13C.SD",
"Delta.R" ,"Delta.R.SD" ,"Marine.Carbon" ,"Description" ,"CalCurve",
"Depth")
l=c("Lab code", "Sample code",expression(phantom()^14*C~"\n(yrs BP)"),
expression(phantom()^14*C~SD~"\n(yrs BP)"), "Lab Error", "Age Span",
"Uncorrected~delta^14*C","Uncorrected~SD~delta^14*C","delta^13*C",
"delta^13*C~SD" ,"Delta*R~(yrs)" ,
"Delta*R~SD~(yrs)","Marine carbon\n(%)","Description","Calibration~curve",
"Depth~(cm)")
ccc=c(1,2,3,"intcal20", "marine20","shcal20",
"marine13", "shcal13",
"nh1", "nh2", "nh3", "sh1-2", "sh3", "nh1_monthly", "nh1_monthly", "nh2_monthly",
"nh3_monthly", "sh1-2_monthly", "sh3_monthly", "kure", "levinKromer",
"santos")
sigmas=c(1,2,3,"1s","2s","3s","1sigma","2sigma","3sigma")
sigmass.number=c(.68,.95,.99,.68,.95,.99,.68,.95,.99)
sigma0=as.data.frame(cbind(sigmas,sigmass.number))
labely=expression(paste("Density (",10^-3,")"))
colourss=c("default","color","colour",1,T,"yes","YES","Yes","YEs","YeS","yeS","yES",
"minimal","gray","grey",0,F,"no","No","nO","NO",FALSE)
colour1=c("default","color","colour",1,T,"yes","YES","Yes","YEs","YeS","yeS","yES")
colour0=c("minimal","gray","grey",0,F,"no","No","nO","NO",FALSE)
tabless=c(T,1,"yes","YES","Yes","YEs","YeS","yES",
"default",F,0,"no","No","nO","NO")
tables1=c(T,1,"yes","YES","Yes","YEs","YeS","yES")
tables0=c("default",F,0,"no","No","nO","NO")
plotss=c("both",T,1,"yes","YES","Yes","YEs","YeS","yES",
"minimal","default","FALSE",F,0,"no","No","nO","NO")
plots1=c("both",T,1,"yes","YES","Yes","YEs","YeS","yES")
plots0=c("minimal","default","FALSE",F,0,"no","No","nO","NO")
labely=expression(paste("Density (",10^-3,")"))
# outcome folders
outy="calout"
if (file.exists(outy)) {
cat("Calout folder already exists", sep="\n\n")
} else {
dir.create(outy)
}
if(ncol(dd)!=length(namess)){
beep(7)
stop("Input database haven´t numbers of columns")
}else{
for(k in 1:ncol(dd)){
if(colnames(dd)[k]!=namess[k]){
cat(paste0("Error in colname ",k))
beep(7)
stop("Input database haven´t numbers of columns")
}else{
if(length(sigma)!=1){
beep(7)
stop("Sigma should be one item")
}else{
if(!is.character(sigma)){
if(!is.numeric(sigma)){
beep(7)
stop("Sigma should be alowed value")
}else{
if(sigma<0&sigma>3){
beep(7)
stop("Sigma should be a value between 0 to 3")
}else{
if(sigma>=1){warning("if you choose a number such 1, 2 or 3, means that 1 sigma, 2sigma or 3sigma")}
sigma=sigma
}
}
}else{
if(length(which(sigma0$sigmas!=sigma))==(length(sigma0$sigmas)-1)){
beep(7)
stop("Sigma should be alowed value")
}else{
s=sigma0$sigmass.number[which(sigma0$sigmas==sigma)]
sigma=s
}
}
}
}
}
}
if(length(show.plot)!=1){
beep(7)
stop("show.plot value should be one item")
}else{
if(sum(plotss==show.plot,na.rm=T)<1){
beep(7)
stop("show.plot value don´t allowed, just to be minimal, default, both, FALSE, T, F, 0, 1")
}
}
if(length(curve)!=1){
beep(7)
stop("just picked one calibration curve")
}else{
if(sum(ccc!=curve,na.rm=T)!=(length(ccc)-1)){
beep(7)
stop(paste0("name of calibration curve do not find, just to be intcal20, marine20, shcal20, marine13, shcal13, nh1, nh2, nh3,
sh1-2, sh3, nh1_monthly, nh1_monthly, nh2_monthly, nh3_monthly, sh1-2_monthly, sh3_monthly,
kure, levinKromer, santos"))
}
}
if(length(show.table)!=1){
beep(7)
stop("show.table value should be one item")
}else{
if(length(which(tabless==show.table))<1){
beep(7)
stop("show.table value don´t allowed, just to be minimal, default, both, FALSE, T, F, 0, 1")
}
}
if(length(colour)!=1){
beep(7)
stop("colour value should be one item")
}else{
if(length(which(colourss==colour))<1){
beep(7)
stop("colour value don´t allowed, just to be minimal,default,gray,grey,color,colour,0,1,T,F,yes,no")
}
}
#######################################
#Input variables
sigma=sigma# 0.68, 0.95, 0.99 >>>one, two, three sigma
rrr=NULL
rr=NULL
r=NULL
sss=NULL
vvv=NULL
gg=NULL
rsv=NULL
sdrsv=NULL
c14=NULL
sdc14=NULL
dd$mean=NA
dd$lower=NA
dd$upper=NA
dd$median=NA
dd$percent=NA
dd$max=NA
dd$error=NA
beep(2)
beep(2)
beep(2)#mario bros sound
for(i in 1:length(dd$Sample)){
rsv=as.numeric(dd$Delta.R[i])
sdrsv=as.numeric(dd$Delta.R.SD[i])
c14=as.numeric(dd$X14C.BP[i])
sdc14=as.numeric(dd$X14C.Age.SD[i])
if(sum(is.null(c14)==T,is.null(sdc14)==T,na.rm=T)>0){
next()
}else{
if(sum(is.na(c14)==T,is.na(sdc14)==T)>0){
next()
}else{
if(sum(curve=="marine20"&((c14-sdc14-rsv-sdrsv)<603),curve=="marine20"&((c14+sdc14+rsv+sdrsv)>50000),na.rm = T)==1){
next()
}else{
if(is.na(rsv)|is.null(rsv)==1){
rsv=0
}
if(is.na(sdrsv)|is.null(sdrsv)==1){
sdrsv=0
}
assign(paste0("rrr",i),calibrate(age=c14, error=sdc14, cc = curve, prob=sigma, yr.steps=1, threshold=5e-04, rounded=4, reservoir=c(rsv,sdrsv),legend.cex = 1))
invisible(get(paste0("rrr",i)))
assign(paste0("r",i),as.data.frame(get(paste0("rrr",i))[1])[1])
assign(paste0("rr",i),as.data.frame(get(paste0("rrr",i))[1])[2])
dd$mean[i]=sum(as.data.frame(get(paste0("rrr",i))[1])[1]*as.data.frame(get(paste0("rrr",i))[1])[2])
if(dim(get(paste0("rrr",i))[[2]])[1]==1){
dd$lower[i]=get(paste0("rrr",i))[[2]][1]
dd$upper[i]=get(paste0("rrr",i))[[2]][2]
dd$median[i]=round(dd$lower[i]*.5+dd$upper[i]*.5)
dd$percent[i]=get(paste0("rrr",i))[[2]][3]
}else{
gg=as.data.frame(get(paste0("rrr",i))[[2]])
dd$lower[i]=gg$from[which(gg$perc==max(gg$perc))]
dd$upper[i]=gg$to[which(gg$perc==max(gg$perc))]
dd$median[i]=round(dd$lower[i]*.5+dd$upper[i]*.5)
dd$percent[i]=gg$perc[which(gg$perc==max(gg$perc))]
}
if(length(which(get(paste0("rr",i))==max(get(paste0("rr",i)))))==1){
dd$max[i]=get(paste0("r",i))[1][which(get(paste0("rr",i))[,1]==max(get(paste0("rr",i))[,1])),]
}else{
vvv=get(paste0("r",i))[which(get(paste0("rr",i))==max(get(paste0("rr",i)))),]
sss= abs(vvv-dd$mean[i])
dd$max[i]= vvv[which(sss==min(sss))]
}
dd$error[i]=max(abs(dd$lower[i]-dd$max[i]),abs(dd$max[i]-dd$upper[i]))
}
}
}
}
##########################################
#create or open folder with specified name
file=paste0(dct,"/",outy)
setwd(file)
f=dd$Lab[i]
if (file.exists(f)) {
cat("The outcome folder already exists", sep="\n\n")
} else {
dir.create(f)
}
#outcome folder
folder=paste0(file,"/",f)
setwd(folder)
###########################################
#Plotting
c14=NULL
sdc14=NULL
rsv=NULL
sdrsv=NULL
for( i in 1:length(dd$Sample)){
rsv=as.numeric(dd$Delta.R[i])
sdrsv=as.numeric(dd$Delta.R.SD[i])
c14=as.numeric(dd$X14C.BP[i])
sdc14=as.numeric(dd$X14C.Age.SD[i])
if(sum(is.null(c14)==T,is.null(sdc14)==T,na.rm=T)>0){
warning("Can not calibrate dates: null value", sep="\n\n")
next()
}else{
if(sum(is.na(c14)==T,is.na(sdc14)==T)>0){
warning("Can not calibrate dates: NA value", sep="\n\n")
next()
}else{
if(sum(curve=="marine20"&((c14-sdc14-rsv-sdrsv)<603),curve=="marine20"&((c14+sdc14+rsv+sdrsv)>50000),na.rm = T)==1){
cat(paste0("Can´t plotted date beyond ",curve," calibration curve!: Convencial age ",dd$X14C.BP[i],"\u00B1",dd$X14C.Age.SD[i]), sep="\n\n")
next()
}else{
if(is.na(rsv)|is.null(rsv)==1){
rsv=0
}
if(is.na(sdrsv)|is.null(sdrsv)==1){
sdrsv=0
}
png(paste0(dd$Sample[i],".plot.png"),width = 200, heigh = 200, units = 'mm', res =1200)
calibrate(age=c14, error=sdc14, cc = curve, prob=sigma, yr.steps=1, threshold=5e-04, rounded=2, reservoir=c(rsv,sdrsv),legend.cex = 1,)
dev.off()
if(sum(tables1==show.table)>=1){
x11()
plot.new()
calibrate(age=c14, error=sdc14, cc = curve, prob=sigma, yr.steps=1, threshold=5e-04, rounded=2, reservoir=c(rsv,sdrsv),legend.cex = 1)
dev.off()
}
dr=as.data.frame(get(paste0("rrr",i))[1])
dr[[2]]=1000*dr[[2]]
if(sum(is.na(dd$Depth[i]),is.null(dd$Depth[i]),dd$Depth[i]=="",na.rm = T)>0){
label.name=paste0(dd$Lab[i],"-",dd$Sample[i])
}else{
label.name=paste0(dd$Lab[i],"-",dd$Sample[i]," sample on ",dd$Depth[i],"cm")
}
if (is.numeric(curve)) {
if (curve==1)
curve="intcal20"
else if (curve==2)
curve="marine20"
else if (curve==3)
curve="shcal20"
}
medio=data.frame(cbind(x=dd$mean[i],y=dr$V2[which(dr$cal.BP==trunc(dd$mean[i]))][1],lab=rep("Mean",length(dd$mean[i]))),col=rep("gray",length(dd$mean[i])))
mediana=data.frame(cbind(x=dd$median[i],y=dr$V2[which(dr$cal.BP==trunc(dd$median[i]))][1],lab=rep("Median",length(dd$median[i]))),col=rep("green",length(dd$median[i])))
maximo=data.frame(cbind(x=dd$max[i],y=dr$V2[which(dr$cal.BP==trunc(dd$max[i]))][1],lab=rep("Maximum",length(dd$max[i]))),col=rep("black",length(dd$max[i])))
eti=data.frame(rbind(medio,mediana,maximo))
colnames(eti)=c("x","y","lab","col")
eti$x=as.numeric(eti$x)
eti$y=as.numeric(eti$y)
if(sum(colour1==colour)==1){
plotting=ggplot(data=dr,aes(x=dr[[1]], y=dr[[2]]))+
geom_line(linewidth =.1,colour = "black")+
geom_polygon(data=dr,aes(x=dr[[1]], y=dr[[2]]+0.001),alpha=0.1,colour ="gray",linewidth =.1)+
geom_area(data=dr[which(dr[[1]]<dd$upper[i]*1.0001),], aes(x=dr[which(dr[[1]]<dd$upper[i]*1.001),][[1]], y=dr[which(dr[[1]]<dd$upper[i]*1.001),][[2]]),fill ="white")+
geom_area(data=dr[which(dr[[1]]>dd$lower[i]*0.9999),], aes(x=dr[which(dr[[1]]>dd$lower[i]*0.999),][[1]], y=dr[which(dr[[1]]>dd$lower[i]*0.999),][[2]]),fill ="white")+
geom_segment(aes(y =0,
yend =dr$V2[which(dr$cal.BP==trunc(dd$mean[i]))][1]*.9999,
x=dd$mean[i] ,
xend=dd$mean[i]),
color = "gray40",
alpha = 0.5,
size=.1)+
geom_segment(aes(y =0,
yend =dr$V2[which(dr$cal.BP==trunc(dd$median[i]))][1]*.9999,
x=dd$median[i] ,
xend=dd$median[i]),
color = "green",
alpha = 0.5,
size=.5)+
geom_segment(aes(y =0,
yend =dr$V2[which(dr$cal.BP==trunc(dd$max[i]))][1]*.9999,
x=dd$max[i] ,
xend=dd$max[i]),
color = "black",
alpha = 1,
size=.3)+
geom_segment(aes(y =0,
yend =dr$V2[which(dr$cal.BP==dd$lower[i])][1],
x=dd$lower[i],
xend=dd$lower[i]),color = "blue", size=.5)+
geom_segment(aes(y =dr$V2[which(dr$cal.BP==dd$lower[i])][1],
yend =dr$V2[which(dr$cal.BP==dd$lower[i])][1],
x=max(dr$cal.BP),
xend=dd$lower[i]),color = "blue", size=.5)+
annotate("text",x=max(dr$cal.BP)*.5+dd$lower[i]*.5,y=dr$V2[which(dr$cal.BP==dd$lower[i])][1]*.95,label="Lower",size = 4,col="blue", fontface = "bold.italic")+
annotate("text",x=min(dr$cal.BP)*.5+dd$upper[i]*.5,y=dr$V2[which(dr$cal.BP==dd$upper[i])][1]*.95,label="Upper",size = 4,col="red", fontface = "bold.italic")+
geom_segment(aes(y =0,
yend =dr$V2[which(dr$cal.BP==dd$upper[i])][1],
x=dd$upper[i],
xend=dd$upper[i]),color = "red", size=.5)+
geom_segment(aes(y =dr$V2[which(dr$cal.BP==dd$upper[i])][1],
yend =dr$V2[which(dr$cal.BP==dd$upper[i])][1],
x=min(dr$cal.BP),
xend=dd$upper[i]),color = "red", size=.5)+
geom_segment(aes(y =0,
yend =0,
x=min(dr[[1]],na.rm=T),
xend=max(dr[[1]],na.rm=T)),color = "black", size=.1)+
scale_x_continuous(limits = c(min(dr$cal.BP)*.99,max(dr$cal.BP)*1.02),breaks =scales::pretty_breaks(n = 5),guide = "axis_minor")+
scale_y_continuous(limits = c(0,max(dr$V2)*1.02),breaks =scales::pretty_breaks(n = 5),guide = "axis_minor")+
annotate("text",x=quantile(dr[[1]])[4]*.506+quantile(dr[[1]])[5]*.506,y=quantile(dr[[2]])[5]*1.0*1.02,label=label.name, size = 4,col="black")+
annotate("text",x=quantile(dr[[1]])[4]*.506+quantile(dr[[1]])[5]*.506,y=quantile(dr[[2]])[5]*.97*1.02,label=paste0("Cal.age: ",dd$max[i],"\u00B1",dd$error[i]), size = 4,col="black")+
annotate("text",x=quantile(dr[[1]])[4]*.506+quantile(dr[[1]])[5]*.506,y=quantile(dr[[2]])[5]*.94*1.02,label=paste0("\u0394R = ",rsv,"\u00B1",sdrsv), size = 4,col="black")+
annotate("text",x=quantile(dr[[1]])[4]*.506+quantile(dr[[1]])[5]*.506,y=quantile(dr[[2]])[5]*.91*1.02,label=paste0("Probability: ",trunc(100*dd$percent[i])/100,"%"), size = 4,col="black")+
annotate("text",x=quantile(dr[[1]])[4]*.506+quantile(dr[[1]])[5]*.506,y=quantile(dr[[2]])[5]*.88*1.02,label=paste0("Cal. curve: ",curve), size = 4,col="black")+
geom_text_repel(data= eti,
aes(x=eti$x,y=eti$y,
label=eti$lab,
segment.colour="black",
col=eti$col,
alpha = 0.5),
bg.color = "gray30", # shadow colour
bg.r = .05, # shadow radius
force = 1,
vjust = 0,
hjust = 0,
segment.size =.15,
segment.curve= -.3,
min.segment.length = unit(.15,'lines'),
size=4,
nudge_y =.01,
nudge_x =0,
fontface = 'bold',
label.padding=5,
point.padding = unit(1,'lines'),
segment.ncp =3,
box.padding = unit(1,'lines'),
arrow = arrow(length = unit(0.0075, "npc")),
max.time = Inf,
show.legend = FALSE)+
scale_color_manual(values =alpha(c("black","gray","green"),1))+
labs(title=paste0("Relative probability of sample"),x ="Cal yr BP", y = labely)+
theme_classic()+
theme(axis.ticks.length = unit(0.2,"cm"),
ggh4x.axis.ticks.length.minor = rel(0.5),
axis.ticks = element_line(size = 0.5),
ggh4x.axis.ticks.length.minor = rel(0.5),
axis.text.x=element_text(size=11,colour = "black",face="bold",vjust=0),
axis.text.y=element_text(size=11,colour = "black",face="bold",hjust=1),
axis.title=element_text(size=14,face="bold"),
title = element_text(size=16,colour = "black",face="bold"))
ggsave(paste0(label.name,".png"), dpi = 900, width = 250,
height = 159,unit="mm",plot =plotting)
}
if(sum(colour0==colour)==1){
plotting=ggplot(data=dr,aes(x=dr[[1]], y=dr[[2]]))+
geom_line(linewidth =.1,colour = "black")+
geom_polygon(data=dr,aes(x=dr[[1]], y=dr[[2]]+0.001),alpha=0.1,colour ="gray60",linewidth =.1)+
geom_area(data=dr[which(dr[[1]]<dd$upper[i]*1.0001),], aes(x=dr[which(dr[[1]]<dd$upper[i]*1.001),][[1]], y=dr[which(dr[[1]]<dd$upper[i]*1.001),][[2]]),fill ="white")+
geom_area(data=dr[which(dr[[1]]>dd$lower[i]*0.9999),], aes(x=dr[which(dr[[1]]>dd$lower[i]*0.999),][[1]], y=dr[which(dr[[1]]>dd$lower[i]*0.999),][[2]]),fill ="white")+
geom_segment(aes(y =0,
yend =dr$V2[which(dr$cal.BP==trunc(dd$mean[i]))][1]*.9999,
x=dd$mean[i] ,
xend=dd$mean[i]),
color = "gray40",
alpha = 0.75,
size=.1)+
geom_segment(aes(y =0,
yend =dr$V2[which(dr$cal.BP==trunc(dd$median[i]))][1]*.9999,
x=dd$median[i] ,
xend=dd$median[i]),
color = "gray80",
alpha = 1,
size=.5)+
geom_segment(aes(y =0,
yend =dr$V2[which(dr$cal.BP==trunc(dd$max[i]))][1]*.9999,
x=dd$max[i] ,
xend=dd$max[i]),
color = "black",
alpha = 1,
size=.3)+
geom_segment(aes(y =0,
yend =dr$V2[which(dr$cal.BP==dd$lower[i])][1],
x=dd$lower[i],
xend=dd$lower[i]),color = "gray20", size=.5)+
geom_segment(aes(y =dr$V2[which(dr$cal.BP==dd$lower[i])][1],
yend =dr$V2[which(dr$cal.BP==dd$lower[i])][1],
x=max(dr$cal.BP),
xend=dd$lower[i]),color = "gray20", size=.5)+
geom_segment(aes(y =0,
yend =dr$V2[which(dr$cal.BP==dd$upper[i])][1],
x=dd$upper[i],
xend=dd$upper[i]),color = "gray20", size=.5)+
geom_segment(aes(y =dr$V2[which(dr$cal.BP==dd$upper[i])][1],
yend =dr$V2[which(dr$cal.BP==dd$upper[i])][1],
x=min(dr$cal.BP),
xend=dd$upper[i]),color = "gray20", size=.5)+
geom_segment(aes(y =0,
yend =0,
x=min(dr[[1]],na.rm=T),
xend=max(dr[[1]],na.rm=T)),color = "black", size=.1)+
annotate("text",x=min(dr$cal.BP)*.5+dd$upper[i]*.5,y=dr$V2[which(dr$cal.BP==dd$upper[i])][1]*.95,label="Upper",size = 4,col="gray5", fontface = "bold.italic")+
annotate("text",x=max(dr$cal.BP)*.5+dd$lower[i]*.5,y=dr$V2[which(dr$cal.BP==dd$lower[i])][1]*.95,label="Lower",size = 4,col="gray5", fontface = "bold.italic")+
scale_x_continuous(limits = c(min(dr$cal.BP)*.99,max(dr$cal.BP)*1.02),breaks =scales::pretty_breaks(n = 5),guide = "axis_minor")+
scale_y_continuous(limits = c(0,max(dr$V2)*1.02),breaks =scales::pretty_breaks(n = 5),guide = "axis_minor")+
annotate("text",x=quantile(dr[[1]])[4]*.506+quantile(dr[[1]])[5]*.506,y=quantile(dr[[2]])[5]*1.0*1.02,label=label.name, size = 4,col="black")+
annotate("text",x=quantile(dr[[1]])[4]*.506+quantile(dr[[1]])[5]*.506,y=quantile(dr[[2]])[5]*.97*1.02,label=paste0("Cal.age: ",dd$max[i],"\u00B1",dd$error[i]), size = 4,col="black")+
annotate("text",x=quantile(dr[[1]])[4]*.506+quantile(dr[[1]])[5]*.506,y=quantile(dr[[2]])[5]*.94*1.02,label=paste0("\u0394R = ",rsv,"\u00B1",sdrsv), size = 4,col="black")+
annotate("text",x=quantile(dr[[1]])[4]*.506+quantile(dr[[1]])[5]*.506,y=quantile(dr[[2]])[5]*.91*1.02,label=paste0("Probability: ",trunc(100*dd$percent[i])/100,"%"), size = 4,col="black")+
annotate("text",x=quantile(dr[[1]])[4]*.506+quantile(dr[[1]])[5]*.506,y=quantile(dr[[2]])[5]*.88*1.02,label=paste0("Cal. curve: ",curve), size = 4,col="black")+
geom_text_repel(data= eti,
aes(x=eti$x,y=eti$y,
label=eti$lab,
segment.colour="black",
alpha = 0.5),
color = "white", # text color
bg.color = "grey30", # shadow color
bg.r = 0.05, # shadow radius
force = 1,
vjust = 0,
hjust = 0,
segment.size =.15,
segment.curve= -.3,
min.segment.length = unit(.15,'lines'),
size=4,
nudge_y =.01,
nudge_x =0,
fontface = 'bold',
label.padding=5,
point.padding = unit(1,'lines'),
segment.ncp =3,
box.padding = unit(1,'lines'),
arrow = arrow(length = unit(0.0075, "npc")),
max.time = Inf,
show.legend = FALSE)+
labs(title=paste0("Relative probability of sample"),x ="Cal yr BP", y = labely)+
theme_classic()+
theme(axis.ticks.length = unit(0.2,"cm"),
ggh4x.axis.ticks.length.minor = rel(0.5),
axis.ticks = element_line(size = 0.5),
ggh4x.axis.ticks.length.minor = rel(0.5),
axis.text.x=element_text(size=11,colour = "black",face="bold",vjust=0),
axis.text.y=element_text(size=11,colour = "black",face="bold",hjust=1),
axis.title=element_text(size=14,face="bold"),
title = element_text(size=16,colour = "black",face="bold"))
ggsave(paste0(label.name,".png"), dpi = 900, width = 250,
height = 159,unit="mm",plot =plotting)
}
if(length(which(plots1==show.plot))>=1){
x11()
plot.new()
plotting
dev.off()
}else{
warning("Error in plotting of Calibration curve")
}
}
}
}
}
################################################################################
#OUTCOME
dd$mean=round(dd$mean)
write.csv(dd,paste0(dd$`Lab`[i],".calibrated.csv"),sep=",",dec=".",col.names = TRUE)
#plot input table
d1<- input[-c(1),]
colnames(d1)=l
myt=ttheme_minimal(base_size = 12, base_colour = "black", base_family = "",
parse = T , padding = unit(c(2,2), "mm"),colhead=list(fg_params = list(parse=TRUE), fontface=4L,bg_params=list(fill="gray90")))
png(paste0(dd$`Lab`[1],".input.png"), width = 20+ncol(d1)*425/15, heigh = 20+100/19*nrow(d1), units = 'mm', res =1200)
grid.table(d1,rows = NULL,theme=myt)
dev.off()
colnames(dd)[1:length(l)]=l
#plot output table
dd$percent=round(dd$percent)
png(paste0(dd$`Lab code`[1],".output.png"), width = 20+ncol(dd)*525/22, heigh = 20+100/19*nrow(dd), units = 'mm', res =1200)
grid.table(dd,rows = NULL,theme=myt)
dev.off()
if(length(show.table)!=1){
beep(7)
stop("table value should be one item")
}else{
if(length(which(tabless==show.table))<1){
beep(7)
stop("Table value don´t allowed, just to be TRUE,FALSE,T,F,1,0,yes or no")
}else{
if(sum(tables1==show.table)>=1){
x11();grid.table(d1,rows = NULL,theme=myt)
x11();grid.table(dd,rows = NULL,theme=myt)
}else{
warning("Error in plotting of table")
}
}
}
setwd(dct)
end=Sys.time()#ending time
tem=round(end-begin,2)
cat("Working time was estimated how", sep="\n\n")
print(tem)
cat(paste0("Calibration finished of ",dd$`Lab code`[i]," successfully!!", sep="\n\n"))
beep(8)#mario bros sound
}
################################################################################
#to use a calibR how function which managed same way that previous lines of this script.
source("calib2.R")#Call up a function
#INPUT
#data is gonna calibrate
d2=read.csv("mejillones2.csv",sep=";",dec=".",header = TRUE)
calibR2(input=d2,sigma = 0.68,curve="marine20",show.table = F,show.plot =F,colour="no")
################################################################################
-
Intcal package in R (2022). https://cran.r-project.org/web/packages/IntCal/index.html
-
Stuiver, M., & Reimer, P. J. (1993). EXTENDED 14C DATA BASE AND REVISED CALIB 3.014C AGE CALIBRATION PROGRAM. Radiocarbon, 35(1), 215–230. https://doi.org/10.14210/bjast.v17.n2.pNB5-8
-
Guiñez, M., Valdés, J., Sifeddine, A., Boussafir, M., & Dávila, P. M. (2014). Anchovy population and ocean-climatic fluctuations in the Humboldt Current System during the last 700 years and their implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 415, 210–224. https://doi.org/10.1016/j.palaeo.2014.08.026
-
https://github.com/jasb3110/CalibR/blob/02cb2fef4994c204081e9a7e28c4e1e55471d8ce/calib.R - Old version
-
https://github.com/jasb3110/CalibR/blob/4852cd55965a5c007e0de92ed9fe4c5273570682/calib2.R - Last version