Skip to content

This is the implementation for C2LSH algorithm using PySpark with constraints. C2LSH algorithm searches the nearest neighbours (Euclidian space) from the given data points by accepting nearest neighbours using features in the datapoints.

Notifications You must be signed in to change notification settings

jatin7gupta/Collision-Counting-Locality-Sensitive-Hashing

Repository files navigation

Collision Counting Locality Sensitive Hashing using PySpark (C2LSH)

This is the implementation for C2LSH algorithm using PySpark with constraints. C2LSH algorithm searches the nearest neighbours (Euclidian space) from the given data points by accepting nearest neighbours using features in the datapoints.

There are four arguments as input to c2lsh():

  1. data_hashes: is a rdd where each element (i.e., key,value pairs) in this rdd corresponds to (id, data_hash). id is an integer and data_hash is a python list that contains $m$ integers (i.e., hash values of the data point).
  2. query_hashes is a python list that contains $m$ integers (i.e., hash values of the query).
  3. alpha_m is an integer which indicates the minimum number of collide hash values between data and query (i.e., $\alpha m$).
  4. beta_n is an integer which indicates the minimum number of candidates to be returned (i.e., $\beta n$).

Constraints

Not allowed to use the following PySpark functions:

  • aggregate, treeAggregate,aggregateByKey

  • collect, collectAsMap

  • countByKey, countByValue

  • foreach

  • reduce, treeReduce

  • saveAs* (e.g. saveAsTextFile)

  • take* (e.g. take, takeOrdered)

  • top

  • fold

Optimization

Used binary search to search the search space which is a huge improvement from the given linear algorithm discussed in the original research paper.

To run

from pyspark import SparkContext, SparkConf
from time import time
import pickle
import submission

def createSC():
    conf = SparkConf()
    conf.setMaster("local[*]")
    conf.setAppName("C2LSH")
    sc = SparkContext(conf = conf)
    return sc

with open("toy/toy_hashed_data", "rb") as file:
    data = pickle.load(file)

with open("toy/toy_hashed_query", "rb") as file:
    query_hashes = pickle.load(file)

alpha_m  = 10
beta_n = 10

sc = createSC()
data_hashes = sc.parallelize([(index, x) for index, x in enumerate(data)])
start_time = time()
res = submission.c2lsh(data_hashes, query_hashes, alpha_m, beta_n).collect()
end_time = time()
sc.stop()

# print('running time:', end_time - start_time)
print('Number of candidate: ', len(res))
print('set of candidate: ', set(res))

About

This is the implementation for C2LSH algorithm using PySpark with constraints. C2LSH algorithm searches the nearest neighbours (Euclidian space) from the given data points by accepting nearest neighbours using features in the datapoints.

Topics

Resources

Stars

Watchers

Forks