Presentations I have prepared for different courses and lab seminar throughout my PhD
Check here
References:
- Gareth,J., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: With applications in R. Springer: Chicago.
- Hastie, T., Tibshirani, R. , & Friedman, J. . (2011) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., Springer: New York
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research, 15, 19291958.
- Wan, L., Zeiler, M., Zhang, S., LeCun, Y., & Fergus, R. (2013). Regularization of neural networks using dropconnect. ICML, (1), 109111.
- Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent Neural Network Regularization, (2013), 18.
Check here
References:
- Courville - Variational Autoencoder and Extensions(http://videolectures.net/deeplearning2015_courville_autoenco der_extension/)
- Wang - Deep Generative Models (http://www.cs.toronto.edu/~slwang/generative_model.pdf)
- Way et. al. - Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders (2018)
- Kingma et al - Auto-Encoding Variational Bayes (2014)
- Rezende et al - Stochastic back-propagation and variational inference in deep latent Gaussian models (2014)
- Casale et al – Gaussian Process Prior Variational Autoencoders (2018)
Check here
References:
- Ferraty et al (2010) - On the Validity of the Bootstrap in Non-Parametric Functional Regression
Check here
References:
- Conway – A Course in Functional Analysis, 2nd edition , 1990, Chapter 5* - The Diagonalization of Compact Self-Adjoint Operators
- He, Mueller & Wang - Extending correlation and regression from multivariate to functional data , 2000.
Check here
References:
- Quinonero – Dataset Shift in Machine Learning (2012)
Check here
Check here
References:
- Chenlei Leng & Cheng Yong Tang - Sparse Matrix Graphical Models (2012)
Check here
References:
- Qiao, Qian & James - Doubly Functional Graphical Models in High Dimensions (2019)
Check here
References:
- Pircalabelu et al (2020) - Zoom-in–out joint graphical lasso for different coarseness scales
- Zhang et al (2019) - A random covariance model for bi-level graphical modeling with application to resting-state fMRI data