Illustrative framework for AI-driven predictive monitoring and anomaly detection
in DevOps, BFSI, and cloud observability environments.
SmartOps combines classic anomaly detection algorithms (Isolation Forest, One-Class SVM, Autoencoder)
with policy-driven orchestration to predict issues, prevent failures, and trigger auto-remediation.
- Learns operational baselines from telemetry (CPU, latency, APIs, logs)
- Detects deviations indicating potential incidents
- Validates anomalies via guardrails
- Performs safe auto-remediation actions
- Generates human-readable evidence for research and EB1A documentation
flowchart LR
A[Sources: Logs & Metrics] --> B[Collectors]
B --> C[Feature Engineering]
C --> D1[Detector: Isolation Forest]
C --> D2[Detector: One-Class SVM]
C --> D3[Detector: Autoencoder]
D1 --> E[Ensemble & Scoring]
D2 --> E
D3 --> E
E --> F[Rules Engine: Policies & Guardrails]
F --> G{Action?}
G -- yes --> H[Remediator: Playbooks, Tickets, Runbooks]
G -- no --> I[Observe & Notify]
H --> J[Feedback Loop: Outcomes → Model Tuning]
I --> J
Predictive Monitoring learns “normal” system behavior using multiple anomaly detectors, fuses results, and triggers automated or guided remediation.
# Clone the repository
git clone https://github.com/jbazkar/smartops-framework.git
cd smartops-framework
# Run the illustrative SmartOps pipeline
python examples/simulate_pipeline.py --config configs/sample_config.yamlThis executes a sanitized simulation where SmartOps analyzes synthetic telemetry, applies rules, and performs a dry-run auto-remediation.
smartops-framework/
├─ smartops/ # Core modules
│ ├─ collectors/ # Data collectors
│ ├─ features/ # Feature engineering
│ ├─ detectors/ # ML models (IForest, OCSVM, Autoencoder)
│ ├─ fusion/ # Ensemble fusion logic
│ ├─ rules/ # Guardrails and thresholds
│ ├─ orchestrators/ # Pipeline orchestrators
│ └─ remediation/ # Remediation actions
├─ configs/ # YAML configurations
├─ examples/ # Example pipelines
├─ results_banking/ # BFSI synthetic datasets
├─ docs/ # Architecture & Evidence
├─ assets/ # Images and supporting visuals
├─ tests/ # Unit/smoke tests
├─ LICENSE, CITATION.cff, README.md
└─ .github/workflows/ # CI automation
Demonstrates early-stage anomaly detection and quantified improvement after AI SmartOps integration.
📄 docs/evidence.md
Shows measurable impact of AI on detection accuracy and false-positive reduction.
| Metric | Before | After | Improvement |
|---|---|---|---|
| Anomaly Detection Accuracy | 70 % | 92 % | +22 % |
| False Positives | 30 % | 5 % | −25 % |
© 2025 Baskaran Jeyarajan (Baskar)
Licensed under the Apache 2.0 License.
For academic references, please cite:
@software{Jeyarajan_SmartOps_2025,
author = {Baskaran Jeyarajan},
title = {SmartOps: AI-Driven Predictive Monitoring and Anomaly Detection in DevOps},
year = {2025},
publisher = {GitHub},
url = {https://github.com/jbazkar/smartops-framework},
license = {Apache-2.0}
}💬 Author: Baskaran Jeyarajan (Baskar)
🤝 Pull requests and issue reports are welcome — please see CONTRIBUTING.md.
© 2025 Baskaran Jeyarajan. All Rights Reserved. | AI SmartOps Framework



