This is the official implementation of our paper "Mask-based Invisible Backdoor Attacks on Object Detection", accepted by the IEEE International Conference on Image Processing (ICIP), 2024. This research project is developed based on Python 3 and Pytorch, by Jeongjin Shin.
If our work or this repository is useful for your research, please cite our paper as follows:
@inproceedings{maskbackdoor2024,
title={Mask-based Invisible Backdoor Attacks on Object Detection},
author={Shin, Jeongjin},
booktitle={2024 IEEE International Conference on Image Processing (ICIP)},
pages={1050--1056},
year={2024},
organization={IEEE}
}
Here is an example of create environ from scratch with anaconda
# create conda env
conda create --name simp python=3.7
conda activate simp
# install pytorch
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
# install other dependancy
pip install visdom scikit-image tqdm fire ipdb pprint matplotlib torchnet
# start visdom
nohup python -m visdom.server &
If you don't use anaconda, then:
-
install PyTorch with GPU (code are GPU-only), refer to official website
-
install other dependencies:
pip install visdom scikit-image tqdm fire ipdb pprint matplotlib torchnet
-
start visdom for visualization
nohup python -m visdom.server &
-
Download the training, validation, test data and VOCdevkit
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
-
Extract all of these tars into one directory named
VOCdevkit
tar xvf VOCtrainval_06-Nov-2007.tar tar xvf VOCtest_06-Nov-2007.tar tar xvf VOCdevkit_08-Jun-2007.tar
-
It should have this basic structure
$VOCdevkit/ # development kit $VOCdevkit/VOCcode/ # VOC utility code $VOCdevkit/VOC2007 # image sets, annotations, etc. # ... and several other directories ...
-
modify
voc_data_dir
cfg item inutils/config.py
, or pass it to program using argument like--voc-data-dir=/path/to/VOCdevkit/VOC2007/
.
For stable attack model training, the autoencoder needs to be pre-trained for reconstruction. We provide:
Train the backdoored object detection model:
python train.py train --env='backdoor' --plot-every=100 --epsilon=0.05 --stage2=0 --attack-type='d' --target-class=14 --lr-atk=5e-4 --lr=0.001 --load_path_atk=models/ae_reconstruct.pt
Key arguments from the base repository (simple-faster-rcnn-pytorch):
--plot-every=n
: visualize (prediction, loss, etc) every n batches.--env
: visdom env for visualization--voc_data_dir
: where the VOC data stored--use-drop
: use dropout in RoI head, default False--load-path
: pretrained model path, default None, if it's specified, it would be loaded.
Additional arguments for our backdoor attack:
--epsilon
: controls the visibility of the backdoor trigger (default: 0.05)--stage2
: whether to continue training the autoencoder (0 or 1)--attack-type
: the type of attack, can be 'd' (disappearance), 'm' (modification), or 'g' (generation)--target-class
: the target class for modification or generation attacks (default: 14 (person class))--lr-atk
: learning rate for the autoencoder (default: 1e-5)--lr
: learning rate for the object detection model (default: 1e-3)
This code is based on the simple-faster-rcnn-pytorch. We thank the authors for their excellent work.