Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: add benchmark with filtering #69

Merged
merged 5 commits into from
Dec 20, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -161,6 +161,34 @@ One can run `executor/benchmark.py` to get a quick performance overview.
|500000 | 467.936 | 0.046 | 0.356 | 2.823|
|1000000 | 1025.506 | 0.091 | 0.695 | 5.778|

Results with filtering from `examples/benchmark_with_filtering.py`

| Stored data |% same filter| Indexing time | Query size=1 | Query size=8 | Query size=64|
|-----|-----|-----|-----|-----|-----|
| 10000.000 | 0.050 | 2.869 | 0.004 | 0.030 | 0.270 |
| 10000.000 | 0.150 | 2.869 | 0.004 | 0.035 | 0.294 |
| 10000.000 | 0.200 | 3.506 | 0.005 | 0.038 | 0.287 |
| 10000.000 | 0.300 | 3.506 | 0.005 | 0.044 | 0.356 |
| 10000.000 | 0.500 | 3.506 | 0.008 | 0.064 | 0.484 |
| 10000.000 | 0.800 | 2.869 | 0.013 | 0.098 | 0.910 |
| 100000.000 | 0.050 | 75.960 | 0.018 | 0.134 | 1.092 |
| 100000.000 | 0.150 | 75.960 | 0.026 | 0.211 | 1.736 |
| 100000.000 | 0.200 | 78.475 | 0.034 | 0.265 | 2.097 |
| 100000.000 | 0.300 | 78.475 | 0.044 | 0.357 | 2.887 |
| 100000.000 | 0.500 | 78.475 | 0.068 | 0.565 | 4.383 |
| 100000.000 | 0.800 | 75.960 | 0.111 | 0.878 | 6.815 |
| 500000.000 | 0.050 | 497.744 | 0.069 | 0.561 | 4.439 |
| 500000.000 | 0.150 | 497.744 | 0.134 | 1.064 | 8.469 |
| 500000.000 | 0.200 | 440.108 | 0.152 | 1.199 | 9.472 |
| 500000.000 | 0.300 | 440.108 | 0.212 | 1.650 | 13.267 |
| 500000.000 | 0.500 | 440.108 | 0.328 | 2.637 | 21.961 |
| 500000.000 | 0.800 | 497.744 | 0.580 | 4.602 | 36.986 |
| 1000000.000 | 0.050 | 1052.388 | 0.131 | 1.031 | 8.212 |
| 1000000.000 | 0.150 | 1052.388 | 0.263 | 2.191 | 16.643 |
| 1000000.000 | 0.200 | 980.598 | 0.351 | 2.659 | 21.193 |
| 1000000.000 | 0.300 | 980.598 | 0.461 | 3.713 | 29.794 |
| 1000000.000 | 0.500 | 980.598 | 0.732 | 5.975 | 47.356 |
| 1000000.000 | 0.800 | 1052.388 | 1.151 | 9.255 | 73.552 |

## Research foundations of PQLite

Expand Down
101 changes: 101 additions & 0 deletions examples/benchmark_with_filtering.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@

from jina import DocumentArray, Document
from jina.logging.profile import TimeContext
from pqlite import PQLite

import os
import shutil
import numpy as np

n_index = [10_000, 100_000, 500_000, 1_000_000]

n_query = [1, 8, 64]
D = 768
R = 5
B = 5000
n_cells = 1
probs =[[0.20, 0.30, 0.50],
[0.05, 0.15, 0.80]]
categories = ['comic', 'movie', 'audiobook']

def clean_workspace():
if os.path.exists('./data'):
shutil.rmtree('./data')

if os.path.exists('./workspace'):
shutil.rmtree('./workspace')


def docs_with_tags(N, D, probs, categories):

all_docs = []
for k,prob in enumerate(probs):
n_current = int(N*prob)
X = np.random.random((n_current, D)).astype(np.float32)

docs = [
Document(
embedding=X[i],
tags={
'category': categories[k],
},
)
for i in range(n_current)
]
all_docs.extend(docs)

return DocumentArray(all_docs)


results = []
for n_i in n_index:

results_ni = []
for current_probs in probs:

clean_workspace()
columns = [('category', str)]
idxer = PQLite(
dim=D,
initial_size=n_i,
n_cells=n_cells,
metas={'workspace': './workspace'},
columns=columns
)

da = docs_with_tags(n_i, D, current_probs, categories)

with TimeContext(f'indexing {n_i} docs') as t_i:
for i, _batch in enumerate(da.batch(batch_size=B)):
idxer.index(_batch)

for cat,prob in zip(categories, current_probs):
f = {'category': {'$eq': cat}}

query_times = []
for n_q in n_query:
qa = DocumentArray.empty(n_q)
q_embs = np.random.random([n_q, D]).astype(np.float32)
qa.embeddings = q_embs
t_qs = []

for _ in range(R):
with TimeContext(f'searching {n_q} docs') as t_q:
idxer.search(qa, filter=f)
t_qs.append(t_q.duration)
query_times.append(np.mean(t_qs[1:]))

print(f'\n\nprob={prob}, current_probs={current_probs}, n_i={n_i}\n\n')
results_ni.append([n_i, prob, t_i.duration] + query_times)

results.append(results_ni)


title = '| Stored data |% same filter| Indexing time | Query size=1 | Query size=8 | Query size=64|'
print(title)
print('|-----' * 6 + '|')
for block in results:
sorted_elements_in_block = np.argsort([b[1] for b in block])
for pos in sorted_elements_in_block:
res = block[pos]
print(''.join([f'| {x:.3f} ' for x in res] + ['|']))