Skip to content

A dead simple profiler for FastAPI applications, designed to provide per-request performance metrics and export them to a CSV format easily importable into Google Sheets or other spreadsheet software.

License

Notifications You must be signed in to change notification settings

jithinsankar/fastapi-simple-profiler

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FastAPI Simple Profiler

A dead simple profiler for FastAPI applications, designed to provide per-request performance metrics and export them to a CSV format easily importable into Google Sheets or other spreadsheet software. Image

Features

  • Middleware-based: Easily integrate into your FastAPI application with a single middleware.
  • Per-request Metrics: Capture total request wall clock time (TotalTimeMs) and CPU time (CPUTimeMs) for each API call.
  • Conditional Activation: Enable profiling via a URL query parameter (?profile=true) or by setting the FASTAPI_SIMPLE_PROFILER_ENABLED=true environment variable to control overhead.
  • In-Memory Storage: Temporarily stores recent profiling data in memory, with a configurable retention policy.
  • CSV Export Endpoint: Access a dedicated endpoint (/profiler/metrics.csv) to download collected metrics as a CSV file.
  • Google Sheets Ready: CSV format is optimized for direct import into spreadsheet applications.
  • Lightweight: Designed for minimal overhead, especially when profiling is not active.

Installation

You can install the package using pip:

pip install fastapi-simple-profiler

This package depends on pyinstrument for detailed CPU time measurement, pandas for CSV generation, and fastapi/starlette for the web framework integration. These dependencies will be automatically installed.

Usage

1. Integrate the Middleware

Add ProfilerMiddleware to your FastAPI application instance.

from fastapi import FastAPI  
from fastapi.responses import StreamingResponse  
from fastapi_simple_profiler import ProfilerMiddleware, profiler_instance  
import uvicorn  
import time  
import asyncio

app = FastAPI()

# Add the profiler middleware to your FastAPI application.  
# You can configure its behavior:  
# - `enable_by_default`: Set to `True` to profile all requests by default.  
#                        (Default: `False`)  
# - `profile_query_param`: The query parameter name to toggle profiling.  
#                          (Default: "profile")  
# - `max_retained_requests`: The maximum number of requests to keep in memory.  
#                            Older requests are automatically pruned.  
#                            (Default: 1000)  

app.add_middleware(  
    ProfilerMiddleware,  
    enable_by_default=True, # Set to True to enable profiling for all requests by default  
    profile_query_param="profile", # e.g., use `?profile=true` in URL  
    max_retained_requests=500 # Keep data for the last 500 requests in memory  
)

@app.get("/")  
async def read_root():  
    """A simple root endpoint."""  
    await asyncio.sleep(0.01) # Simulate some async I/O work  
    return {"message": "Hello World"}

@app.get("/items/{item_id}")  
async def read_item(item_id: int):  
    """An endpoint that simulates some compute-bound or I/O work."""  
    if item_id % 2 == 0:  
        await asyncio.sleep(0.05) # Simulate longer async work for even IDs  
    else:  
        # Simulate some blocking CPU work (e.g., heavy computation)  
        # This will be reflected in CPUTimeMs by pyinstrument  
        _ = [i*i for i in range(100000)] # CPU-bound loop  
        time.sleep(0.005) # Small blocking sleep to show in TotalTimeMs too  
    return {"item_id": item_id, "message": "Item processed"}

@app.get("/slow-endpoint")  
async def slow_endpoint():  
    """An intentionally slow endpoint."""  
    await asyncio.sleep(0.5) # Simulate significant async delay  
    return {"message": "This was a slow request!"}

@app.get("/profiler/metrics.csv")  
async def get_profiler_metrics_csv():  
    """  
    Dedicated endpoint to download the collected profiling metrics as a CSV file.  
    This uses FastAPI's StreamingResponse for efficient file download.  
    """  
    csv_buffer = profiler_instance.export_to_csv()  
    return StreamingResponse(  
        csv_buffer,  
        media_type="text/csv",  
        headers={"Content-Disposition": "attachment; filename=fastapi_profile_metrics.csv"}  
    )

@app.get("/profiler/clear")  
async def clear_profiler_data():  
    """  
    Endpoint to clear all collected profiling data from memory.  
    Useful for resetting the collected metrics.  
    """  
    profiler_instance.clear_data()  
    return {"message": "Profiler data cleared."}




if __name__ == "__main__":  
    # To run this example:  
    # 1. Save the above code as `main.py` in your project root.  
    # 2. Ensure `fastapi-simple-profiler` is installed (`pip install fastapi-simple-profiler`).  
    # 3. Run from your terminal: `uvicorn main:app --reload --port 8000`  
    #  
    # To enable profiling for ALL requests via environment variable:  
    # FASTAPI_SIMPLE_PROFILER_ENABLED=true uvicorn main:app --reload --port 8000  
    uvicorn.run(app, host="0.0.0.0", port=8000)

if you want to preview the results at an endpoint like below add the following code

Image

import pandas as pd
from fastapi.responses import HTMLResponse


@app.get("/profiler/dashboard", summary="Profiler Dashboard", response_class=HTMLResponse)
async def get_profiler_dashboard():
    """
    Dedicated endpoint to display the collected profiling metrics as an HTML table in the browser.
    """
    profile_data = profiler_instance.get_profile_data()

    if not profile_data:
        # If no data, display a message
        html_content = """
        <!DOCTYPE html>
        <html lang="en">
        <head>
            <meta charset="UTF-8">
            <meta name="viewport" content="width=device-width, initial-scale=1.0">
            <title>FastAPI Profiler Dashboard</title>
            <script src="https://cdn.tailwindcss.com"></script>
            <style>
                body { font-family: 'Inter', sans-serif; background-color: #f3f4f6; color: #374151; }
                .container { max-width: 90%; margin: 2rem auto; padding: 1.5rem; background-color: #ffffff; border-radius: 0.75rem; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); }
                h1 { color: #1f2937; }
                .clear-button { background-color: #dc2626; color: white; padding: 0.5rem 1rem; border-radius: 0.5rem; text-decoration: none; display: inline-block; margin-top: 1rem; }
                .clear-button:hover { background-color: #ef4444; }
                .export-csv-button { background-color: #10b981; color: white; padding: 0.5rem 1rem; border-radius: 0.5rem; text-decoration: none; display: inline-block; margin-top: 1rem; margin-left: 0.5rem; }
                .export-csv-button:hover { background-color: #059669; }
                .message { text-align: center; font-size: 1.125rem; color: #6b7280; }
            </style>
            <link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap" rel="stylesheet">
        </head>
        <body>
            <div class="container">
                <h1 class="text-3xl font-bold mb-4">FastAPI Profiler Dashboard</h1>
                <p class="message">No profiling data collected yet. Make some requests with `?profile=true` or set `FASTAPI_SIMPLE_PROFILER_ENABLED=true`.</p>
                <div class="flex justify-start space-x-2">
                    <a href="/profiler/clear" class="clear-button">Clear Data</a>
                    <a href="/profiler/metrics.csv" class="export-csv-button">Export to CSV</a>
                </div>
            </div>
        </body>
        </html>
        """
    else:
        # Create a DataFrame from the profile data
        df = pd.DataFrame(profile_data)

        # Define the desired column order for display
        desired_columns = [
            "Timestamp", "RequestPath", "HTTPMethod", "StatusCode",
            "TotalTimeMs", "CPUTimeMs"
        ]
        # Ensure all desired columns are present, filling missing with NaN if necessary
        for col in desired_columns:
            if col not in df.columns:
                df[col] = pd.NA

        # Reorder columns to the desired sequence
        df = df[desired_columns]

        # Convert DataFrame to an HTML table string
        html_table = df.to_html(index=False, classes="min-w-full divide-y divide-gray-200 shadow-sm sm:rounded-lg")

        # Basic HTML structure with Tailwind CSS for modern look
        html_content = f"""
        <!DOCTYPE html>
        <html lang="en">
        <head>
            <meta charset="UTF-8">
            <meta name="viewport" content="width=device-width, initial-scale=1.0">
            <title>FastAPI Profiler Dashboard</title>
            <script src="https://cdn.tailwindcss.com"></script>
            <style>
                /* Custom styles for the table */
                body {{ font-family: 'Inter', sans-serif; background-color: #f3f4f6; color: #374151; }}
                .container {{ max-width: 90%; margin: 2rem auto; padding: 1.5rem; background-color: #ffffff; border-radius: 0.75rem; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); }}
                h1 {{ color: #1f2937; }}
                table {{ width: 100%; border-collapse: collapse; margin-top: 1.5rem; }}
                th, td {{ padding: 0.75rem; border: 1px solid #e5e7eb; text-align: left; }}
                th {{ background-color: #f9fafb; font-weight: 600; color: #4b5563; }}
                tr:nth-child(even) {{ background-color: #f3f4f6; }}
                tr:hover {{ background-color: #e0f2fe; }} /* Light blue hover */
                .clear-button {{ background-color: #dc2626; color: white; padding: 0.5rem 1rem; border-radius: 0.5rem; text-decoration: none; display: inline-block; margin-top: 1rem; }}
                .clear-button:hover {{ background-color: #ef4444; }}
                .export-csv-button {{ background-color: #10b981; color: white; padding: 0.5rem 1rem; border-radius: 0.5rem; text-decoration: none; display: inline-block; margin-top: 1rem; margin-left: 0.5rem; }}
                .export-csv-button:hover {{ background-color: #059669; }}
            </style>
            <link href="https://fonts.googleapis.com/css2?family=Inter:wght@400;600;700&display=swap" rel="stylesheet">
        </head>
        <body>
            <div class="container">
                <h1 class="text-3xl font-bold mb-4">FastAPI Profiler Dashboard</h1>
                {html_table}
                <div class="flex justify-start space-x-2">
                    <a href="/profiler/clear" class="clear-button">Clear Data</a>
                    <a href="/profiler/metrics.csv" class="export-csv-button">Export to CSV</a>
                </div>
            </div>
        </body>
        </html>
        """

    return HTMLResponse(content=html_content, status_code=200)

2. Run your FastAPI Application

Run your FastAPI application using Uvicorn (recommended ASGI server for FastAPI):

uvicorn your_app_module:app --reload --port 8000

(Replace your_app_module with the name of your Python file, e.g., main).

3. Generate Profiled Requests

Make some requests to your FastAPI application.

4. Export Metrics to CSV

Once you have made some requests (with profiling active), open your web browser and navigate to:

http://localhost:8000/profiler/metrics.csv

This will trigger a direct download of a CSV file (e.g., fastapi_profile_metrics.csv) containing your collected profiling data.

5. Import into Google Sheets

  1. Go to Google Sheets (or your preferred spreadsheet software).
  2. Go to File > Import > Upload.
  3. Choose the downloaded fastapi_profile_metrics.csv file.
  4. Ensure "Detect automatically" is selected for the separator type (usually the default).
  5. Click "Import data".

Your profiling metrics will now be available in a clean, tabular format for analysis!

Columns in the CSV Export

The exported CSV file will include the following columns:

  • Timestamp: The exact time the request completed (YYYY-MM-DD HH:MM:SS).
  • RequestPath: The URL path of the API endpoint (e.g., /items/{item_id}).
  • HTTPMethod: The HTTP method used for the request (e.g., GET, POST).
  • StatusCode: The HTTP response status code (e.g., 200, 404, 500).
  • TotalTimeMs: The total "wall clock" time for the request-response cycle in milliseconds.
  • CPUTimeMs: The actual CPU time spent processing the request in milliseconds, as reported by pyinstrument. This excludes time spent waiting on I/O.

Contributing

Contributions are welcome! If you find bugs, have feature requests, or want to improve the code, please feel free to open issues or submit pull requests on the GitHub repository.

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

A dead simple profiler for FastAPI applications, designed to provide per-request performance metrics and export them to a CSV format easily importable into Google Sheets or other spreadsheet software.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages