-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
206 lines (178 loc) · 6.19 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt
from torch.nn.parameter import Parameter
import math
from PIL import Image
import cv2
# costumized Tanh for LeNet-5 1998
class Tanh(nn.Module):
def forward(self, x):
return 1.7159*torch.tanh(x*2/3)
# Layer C1
# - convolutional layer with 6 feature maps.
# - 5 X 5 kernel
class Layer_C1(nn.Module):
def __init__(self):
super(Layer_C1, self).__init__()
self.c1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1)
self.reset_parameters()
def forward(self, x):
x = self.c1(x)
return x
def reset_parameters(self):
nn.init.kaiming_uniform_(self.c1.weight, a=math.sqrt(2))
self.c1.bias.data.fill_(0.01)
# Layer S2
# - subsampling layer (=Average pool)
# - kernel size 2 X 2
# - map_size 14 X 14
class Layer_S2(nn.Module):
def __init__(self):
super(Layer_S2, self).__init__()
# kernel_size = 2, in_channels = 6
self.kernel_size = 2
self.weight = Parameter(torch.Tensor(1,6,1,1))
self.bias = Parameter(torch.Tensor(1,6,1,1))
self.reset_parameters()
def forward(self, x):
x = F.avg_pool2d(x, self.kernel_size)
x = x*self.weight + self.bias
return x
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(1))
self.bias.data.fill_(0.01)
# Layer C3
# - convolutional layer
# - 16 feature maps
# - each S2 feature map is connected to 10 neighborhoods subset of C3 feature map
class Layer_C3(nn.Module):
def __init__(self):
super(Layer_C3, self).__init__()
# in_channels = 6, out_channels = 16, kernel_size = 5
self.weight = Parameter(torch.Tensor(10, 6, 5, 5))
self.bias = Parameter(torch.Tensor(1, 16, 1, 1))
self.kernel_size = 5
self.out_channels = 16
self.reset_parameters()
def map_combine_list(self):
connection_list = [[0,4,5,6,9,10,11,12,14,15],
[0,1,5,6,7,10,11,12,13,15],
[0,1,2,6,7,8,11,13,14,15],
[1,2,3,6,7,8,9,12,14,15],
[2,3,4,7,8,9,10,12,13,15],
[3,4,5,8,9,10,11,13,14,15]]
return connection_list
def forward(self,x):
B_size = x.size(0)
output_size = x.size(3)-self.kernel_size+1
output = torch.zeros(B_size,self.out_channels,output_size,output_size)
list_ = self.map_combine_list()
for i in range(len(list_)):
output[:,list_[i],:,:] += (F.conv2d(x[:,i,:,:].unsqueeze(1),
self.weight[:,i,:,:].unsqueeze(1)) + self.bias[:,list_[i],:,:])
return output
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(2))
self.bias.data.fill_(0.01)
# Layer S4
# - subsampling layer (=Average pool)
# - kernel size 2 X 2
# - map_size 14 X 14
class Layer_S4(nn.Module):
def __init__(self):
super(Layer_S4, self).__init__()
# kernel_size = 2, in_channels = 16
self.kernel_size = 2
self.weight = Parameter(torch.Tensor(1,16,1,1))
self.bias = Parameter(torch.Tensor(1,16,1,1))
self.reset_parameters()
def forward(self, x):
x = F.avg_pool2d(x, self.kernel_size)
x = x*self.weight + self.bias
return x
def reset_parameters(self):
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(1))
self.bias.data.fill_(0.01)
# Layer C5
# - convolutional layer with 6 feature maps.
# - 5 X 5 kernel
class Layer_C5(nn.Module):
def __init__(self):
super(Layer_C5, self).__init__()
self.c5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1)
self.reset_parameters()
def forward(self, x):
x = self.c5(x)
return x
def reset_parameters(self):
nn.init.kaiming_uniform_(self.c5.weight, a=math.sqrt(2))
self.c5.bias.data.fill_(0.01)
# RBF kernel function
# - output layer is composed of Euclidean radial basis function units.
# - kernel is in './RBF_kerenl'
class RBF(nn.Module):
def __init__(self):
# in_features = 84, out_features = 10, tensor kernel
super(RBF, self).__init__()
self.in_features = 84
self.out_features = 10
self.kernel = self.rbf_tensor()
def forward(self, x):
size = (x.size(0), self.out_features, self.in_features)
x = x.unsqueeze(1).expand(size)
c = self.kernel.unsqueeze(0).expand(size)
output = (x - c).pow(2).sum(-1)
return output
# making kernel image to tensor
def rbf_tensor(self):
kernel_list = []
for i in range(10):
file = './RBF_kernel/' + str(i) + '_RBF.jpg'
image = cv2.imread(file, 0)
image = cv2.threshold(image,127,1,cv2.THRESH_BINARY)[1]*-1+1
kernel_list.append(image.flatten())
return(torch.Tensor(kernel_list))
# LeNet5
class LeNet5(nn.Module):
def __init__(self):
super(LeNet5, self).__init__()
self.feature_extractor = nn.Sequential(
# layer C1
# 6 feature maps, kernel 5x5
Layer_C1(),
Tanh(),
# layer S2
# sub-sampling layer (=Average pool) 2x2, map_size=14
Layer_S2(),
Tanh(),
# layer C3
# 16 feature maps, kernel 5x5
Layer_C3(),
Tanh(),
# layer S4
# sub-sampling layer (=Average pool) 2X2
Layer_S4(),
Tanh(),
# layer C5
# 120 feature maps, kernel 5x5
Layer_C5(),
Tanh()
)
self.classifier = nn.Sequential(
# layer F6
nn.Linear(in_features=120, out_features=84),
Tanh(),
RBF(),
)
def forward(self, x):
x = self.feature_extractor(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x