Skip to content

Commit

Permalink
Merge branch 'master' into beta
Browse files Browse the repository at this point in the history
  • Loading branch information
jn-jairo committed Oct 22, 2023
2 parents f99fc27 + 8594c8b commit 0ab9382
Show file tree
Hide file tree
Showing 4 changed files with 58 additions and 18 deletions.
2 changes: 1 addition & 1 deletion comfy/controlnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -416,7 +416,7 @@ def get_control(self, x_noisy, t, cond, batched_number):
if control_prev is not None:
return control_prev
else:
return {}
return None

if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
Expand Down
62 changes: 47 additions & 15 deletions comfy/ldm/modules/attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,9 +95,19 @@ def Normalize(in_channels, dtype=None, device=None):
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True, dtype=dtype, device=device)

def attention_basic(q, k, v, heads, mask=None):
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5

h = heads
scale = (q.shape[-1] // heads) ** -0.5
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)

# force cast to fp32 to avoid overflowing
if _ATTN_PRECISION =="fp32":
Expand All @@ -119,16 +129,24 @@ def attention_basic(q, k, v, heads, mask=None):
sim = sim.softmax(dim=-1)

out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return out


def attention_sub_quad(query, key, value, heads, mask=None):
scale = (query.shape[-1] // heads) ** -0.5
query = query.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
key_t = key.transpose(1,2).unflatten(1, (heads, -1)).flatten(end_dim=1)
del key
value = value.unflatten(-1, (heads, -1)).transpose(1,2).flatten(end_dim=1)
b, _, dim_head = query.shape
dim_head //= heads

scale = dim_head ** -0.5
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)

key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)

dtype = query.dtype
upcast_attention = _ATTN_PRECISION =="fp32" and query.dtype != torch.float32
Expand All @@ -137,7 +155,7 @@ def attention_sub_quad(query, key, value, heads, mask=None):
else:
bytes_per_token = torch.finfo(query.dtype).bits//8
batch_x_heads, q_tokens, _ = query.shape
_, _, k_tokens = key_t.shape
_, _, k_tokens = key.shape
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens

mem_free_total, mem_free_torch = model_management.get_free_memory(query.device, True)
Expand Down Expand Up @@ -171,7 +189,7 @@ def attention_sub_quad(query, key, value, heads, mask=None):

hidden_states = efficient_dot_product_attention(
query,
key_t,
key,
value,
query_chunk_size=query_chunk_size,
kv_chunk_size=kv_chunk_size,
Expand All @@ -186,9 +204,19 @@ def attention_sub_quad(query, key, value, heads, mask=None):
return hidden_states

def attention_split(q, k, v, heads, mask=None):
scale = (q.shape[-1] // heads) ** -0.5
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5

h = heads
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)

r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)

Expand Down Expand Up @@ -248,9 +276,13 @@ def attention_split(q, k, v, heads, mask=None):

del q, k, v

r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
return r2
r1 = (
r1.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return r1

def attention_xformers(q, k, v, heads, mask=None):
b, _, dim_head = q.shape
Expand Down
6 changes: 5 additions & 1 deletion comfy/model_management.py
Original file line number Diff line number Diff line change
Expand Up @@ -351,7 +351,11 @@ def free_memory(memory_required, device, keep_loaded=[]):

if unloaded_model:
soft_empty_cache()

else:
if vram_state != VRAMState.HIGH_VRAM:
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True)
if mem_free_torch > mem_free_total * 0.25:
soft_empty_cache()

def load_models_gpu(models, memory_required=0):
global vram_state
Expand Down
6 changes: 5 additions & 1 deletion web/extensions/core/widgetInputs.js
Original file line number Diff line number Diff line change
Expand Up @@ -463,7 +463,11 @@ app.registerExtension({
}

if (widget.type === "number" || widget.type === "combo") {
addValueControlWidget(this, widget, "fixed");
let control_value = this.widgets_values?.[1];
if (!control_value) {
control_value = "fixed";
}
addValueControlWidget(this, widget, control_value);
}

// When our value changes, update other widgets to reflect our changes
Expand Down

0 comments on commit 0ab9382

Please sign in to comment.