Skip to content

jopo666/StrongAugment

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Augment like there's no tomorrow: Consistently performing neural networks for medical imaging [arXiv]

This repository contains implementations for StrongAugment and creating distribution-shifted datasets.

Installation

pip3 install strong-augment

Training with strong augmentation.

To train your neural networks with strong augmentatiom simply include StrongAugment to your image transformation pipeline!

import torchvision.transforms as T
from strong_augment import StrongAugment

trnsf = T.Compose(
    T.RandomResizedCrop(224),
    T.RandomVerticalFlip(0.5),
    T.RandomHorizontalFlip(0.5),
    StrongAugment(operations=[2, 3, 4], probabilities=[0.5, 0.3, 0.2]), # Just one line!
    T.ToTensor(),
    T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.2, 0.2, 0.2])
    T.RandomErase(0.2)
)

Creating shifted datasets.

Function shift_dataset can be used create the distribution-shifted datasets for shifted evaluation.

from functools import partial
import torchvision.transforms.functional as F
from strong_augment import shift_dataset

# Let's define the distribution shift function.
shift_fn = partial(F.adjust_gamma, gamma=0.2)

# Now we can shift the dataset!
shift_dataset(
    paths=paths_to_dataset_images,
    output_dir="/data/shifted_datasets/gamma_02",
    function=shift_fn,
    num_workers=20,
)
Processing images |##########| 100000/100000 [00:49<00:00]

Citation

If you use StrongAugment or shifted evaluation, please cite us!

@paper{strong_augment2022,
    title = {Augment like there's no tomorrow: Consistently performing neural networks for medical imaging},
    author = {Pohjonen, Joona and Stürenberg, Carolin and Föhr, Atte and Randen-Brady, Reija and Luomala, Lassi and Lohi, Jouni and Pitkänen, Esa and Rannikko, Antti and Mirtti, Tuomas},
    url = {https://arxiv.org/abs/2206.15274},
    publisher = {arXiv},
    year = {2022},
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages