Skip to content

An R package implementing a collection of clustered and hierarchical portfolio optimization techniques.

Notifications You must be signed in to change notification settings

jpfitzinger/ClusterPortfolios

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

50 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ClusterPortfolios

ClusterPortfolios is an R package for constructing portfolios based on statistical clustering techniques. Clustering financial asset returns and allocating capital along cluster boundaries can increase robustness, decrease sampling sensitivity, improve diversification and enhance portfolio performance.

Methods implemented in this package:

  • Hierarchical Risk Parity (Lopez de Prado, 2016)
  • Constrained HRP (Pfitzinger & Katzke, 2019)
  • Nested Clusters Optimization (Lopez de Prade, 2019)
  • Clustered Minimum Variance
  • Clustered Equal Weights
  • Hierarchical filters of the covariance matrix

Installation

devtools::install_github("https://github.com/jpfitzinger/ClusterPortfolios")

Usage

library(ClusterPortfolios)
data("Industry_10")
rets <- Industry_10
sigma <- cov(rets)
HRP(sigma, UB = 0.15, tau = 0.5)

References

Lopez de Prado, M. (2016). Building Diversified Portfolios that Outperform Out-of-Sample. SSRN Electronic Journal.

Lopez de Prado, M. (2019). A Robust Estimator of the Efficient Frontier. SSRN Electronic Journal.

Pfitzinger, J., Katzke, N. (2019). A Constrained Hierarchical Risk Parity Algorithm with Cluster-Based Capital Allocation. Stellenbosch University, Department of Economics. Working Paper 14/2019.

About

An R package implementing a collection of clustered and hierarchical portfolio optimization techniques.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published